We report the implementation of analytic energy gradients for the evaluation of first-order electrical properties and nuclear forces within the framework of the spin-free (SF) exact two-component (X2c) theory. In the scheme presented here, referred to in the following as SFX2c-1e, the decoupling of electronic and positronic solutions is performed for the one-electron Dirac Hamiltonian in its matrix representation using a single unitary transformation. The resulting two-component one-electron matrix Hamiltonian is combined with untransformed two-electron interactions for subsequent self-consistent-field and electron-correlated calculations. The “picture-change” effect in the calculation of properties is taken into account by considering the full derivative of the two-component Hamiltonian matrix with respect to the external perturbation. The applicability of the analytic-gradient scheme presented here is demonstrated in benchmark calculations. SFX2c-1e results for the dipole moments and electric-field gradients of the hydrogen halides are compared with those obtained from nonrelativistic, SF high-order Douglas-Kroll-Hess, and SF Dirac-Coulomb calculations. It is shown that the use of untransformed two-electron interactions introduces rather small errors for these properties. As a first application of the analytic geometrical gradient, we report the equilibrium geometry of methylcopper (CuCH3) determined at various levels of theory.

1.
2.
K. G.
Dyall
and
K.
Fægri
,
Relativistic Quantum Chemistry
(
Oxford University Press
,
New York
,
2007
), Pt. III.
3.
K. G.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
4.
L.
Visscher
and
E.
van Lenthe
,
Chem. Phys. Lett.
306
,
357
(
1999
).
5.
L.
Visscher
and
T.
Saue
,
J. Chem. Phys.
113
,
3996
(
2000
).
6.
T.
Fleig
and
L.
Visscher
,
Chem. Phys.
311
,
113
(
2005
).
7.
T.
Fleig
,
L. K.
Sørensen
, and
J.
Olsen
,
Theor. Chim. Acta.
118
,
347
(
2007
).
8.
L.
Cheng
and
J.
Gauss
,
J. Chem. Phys.
134
,
244112
(
2011
).
9.
L. L.
Foldy
and
S. A.
Wouthuysen
,
Phys. Rev.
78
,
29
(
1950
).
10.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
11.
12.
13.
In principle, the DK transformation can also be applied to two-electron interactions (see, e.g.,
R.
Samzow
,
B. A.
Hess
, and
G.
Jansen
,
J. Chem. Phys.
96
,
1227
(
1992
)). However, the resulting formulation is even more involved than the four-component theory and is thus not widely used. Therefore, in the present paper we discuss only the DKH method with untransformed two-electron interactions. We do the same for the infinite-order two-component method.
14.
J. L.
Heully
,
I.
Lindgren
,
E.
Lindroth
,
S.
Lundquist
, and
A. M.
Mårtensen-Pendrill
,
J. Phys. B
19
,
2799
(
1986
).
15.
Ch.
Chang
,
M.
Pelissier
, and
P.
Durand
,
Phys. Scr.
34
,
394
(
1986
).
16.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
17.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
).
18.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
19.
D.
Peng
and
K.
Hirao
,
J. Chem. Phys.
130
,
044102
(
2009
).
20.
M.
Barysz
,
A. J.
Sadlej
, and
J. G.
Snijders
,
Int. J. Quantum Chem.
65
,
225
(
1997
).
21.
M.
Barysz
and
A. J.
Sadlej
,
J. Chem. Phys.
116
,
2696
(
2002
).
22.
M.
Iliaš
,
H. J. Aa.
Jensen
,
V.
Kellö
,
B. O.
Roos
, and
M.
Urban
,
Chem. Phys. Lett.
408
,
210
(
2005
).
23.
K. G.
Dyall
,
J. Chem. Phys.
106
,
9618
(
1997
).
24.
K. G.
Dyall
,
J. Chem. Phys.
109
,
4201
(
1998
).
25.
K. G.
Dyall
and
T.
Enevoldsen
,
J. Chem. Phys.
111
,
10000
(
1999
).
26.
K. G.
Dyall
,
J. Chem. Phys.
115
,
9136
(
2001
).
27.
M.
Filatov
and
K. G.
Dyall
,
Theor. Chem. Acc.
117
,
333
(
2007
).
28.
29.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
123
,
241102
(
2005
).
30.
W.
Kutzelnigg
and
W.
Liu
,
Mol. Phys.
104
,
2225
(
2006
).
31.
W.
Liu
and
W.
Kutzelnigg
,
J. Chem. Phys.
126
,
114107
(
2007
).
32.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
131
,
031104
(
2009
).
33.
H. J. Aa.
Jensen
, in
Proceedings of the International Conference on Relativistic Effects in Heavy Element Chemistry and Physics
, Muelheim/Ruhr, April 6-10,
2005
.
34.
M.
Iliaš
and
T.
Saue
,
J. Chem. Phys.
126
,
064102
(
2007
).
35.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
125
,
044102
(
2006
).
36.
J.
Sikkema
,
L.
Visscher
,
T.
Saue
, and
M.
Iliaš
,
J. Chem. Phys.
131
,
124116
(
2009
).
37.
D.
Cremer
,
E.
Kraka
, and
M.
Filatov
,
Chem. Phys. Chem.
9
,
2510
(
2008
).
38.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
127
,
104106
(
2007
).
39.
V. A.
Nasluzov
and
N.
Rösch
,
Chem. Phys.
210
,
413
(
1996
).
40.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
41.
R. E.
Stanton
and
S.
Havriliak
,
J. Chem. Phys.
81
,
1910
(
1984
).
42.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
Cambridge
,
2009
), Chap. XI.
43.
J. E.
Rice
and
R. D.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
44.
R. M.
Stevens
,
R. M.
Pitzer
, and
W. N.
Lipscomb
,
J. Chem. Phys.
38
,
550
(
1963
).
45.
Coupled cluster techniques for computational chemistry, a quantum-chemical program package by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
D. B.
Bernholdt
,
C.
Berger
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D.
Matthews
,
T.
Metzroth
,
D. P.
ONeill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
S.
Stopkowicz
,
W.
Schwalbach
,
A.
Tajti
,
M. E.
Varner
,
J.
Vázquez
,
J. D.
Watts
,
F.
Wang
, and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
46.
C.
Berger
, Ph.D. dissertation,
Universität Mainz
,
2008
.
47.
S.
Stopkowicz
and
J.
Gauss
,
J. Chem. Phys.
129
,
164119
(
2008
).
48.
S.
Stopkowicz
and
J.
Gauss
,
J. Chem. Phys.
134
,
064114
(
2011
).
49.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
4334
(
1991
).
50.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
51.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
52.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
53.
B. O.
Roos
,
V.
Veryazov
, and
P.
Widmark
,
Theor. Chem. Acc.
111
,
345
(
2004
).
54.
F.
Neese
,
A.
Wolf
,
T.
Fleig
,
M.
Reiher
, and
B. A.
Hess
,
J. Chem. Phys.
122
,
204107
(
2005
).
55.
R.
Mastalerz
,
G.
Barone
,
R.
Lindh
, and
M.
Reiher
,
J. Chem. Phys.
127
,
074105
(
2007
).
56.
M.
Barysz
and
J.
Leszczynski
,
J. Chem. Phys.
126
,
154106
(
2007
).
57.
D. B.
Grotjahn
,
D. T.
Halfen
,
L. M.
Ziurys
, and
A. L.
Cooksy
,
J. Am. Chem. Soc.
126
,
12621
(
2004
).
You do not currently have access to this content.