While the interaction of colloidal particles (sizes in excess of 100 nm) with liquid interfaces may be understood in terms of continuum models, which are grounded in macroscopic properties such as surface and line tensions, the behaviour of nanoparticles at liquid interfaces may be more complex. Recent simulations [D. L. Cheung and S. A. F. Bon, Phys. Rev. Lett.102, 066103 (2009)]

of nanoparticles at an idealised liquid-liquid interface showed that the nanoparticle-interface interaction range was larger than expected due, in part, to the action of thermal capillary waves. In this paper, molecular dynamics simulations of a Lennard-Jones nanoparticle in a binary Lennard-Jones mixture are used to confirm that these previous results hold for more realistic models. Furthermore by including attractive interactions between the nanoparticle and the solvent, it is found that the detachment energy decreases as the nanoparticle-solvent attraction increases. Comparison between the simulation results and recent theoretical predictions [H. Lehle and M. Oettel, J. Phys. Condens. Matter20, 404224 (2008)] shows that for small particles the incorporation of capillary waves into the predicted effective nanoparticle-interface interaction improves agreement between simulation and theory.

1.
F.
Bresme
and
M.
Oettel
,
J. Phys. Condens. Matter
19
,
413101
(
2007
).
2.
W. H.
Binder
,
Angew. Chem., Int. Ed.
44
,
5172
(
2005
).
3.
S.
Cauvin
,
P. J.
Colver
, and
S. A. F.
Bon
,
Macromolecules
38
,
7887
(
2005
).
4.
P. S.
Clegg
,
J. Phys. Condens. Matter
20
,
113101
(
2008
).
5.
M. B.
Linder
,
Curr. Opin. Colloid Interface Sci.
14
,
356
(
2009
).
6.
J. T.
Russell
,
Y.
Lin
,
A.
Böker
,
L.
Su
,
P.
Carl
,
H.
Zettl
,
J.
He
,
K.
Sill
,
R.
Tangirala
,
T.
Emrick
,
K.
Littrell
,
P.
Thiyagarajan
,
D.
Cookson
,
A.
Fery
,
Q.
Wang
, and
T. P.
Russell
,
Angew. Chem., Int. Ed.
44
,
2420
(
2005
).
7.
P.
Finkle
,
H. D.
Draper
, and
J. H.
Hildebrand
,
J. Am. Chem. Soc.
45
,
278
(
1923
).
8.
P.
Pieranski
,
Phys. Rev. Lett.
45
,
569
(
1980
).
9.
B. P.
Binks
and
S. O.
Lumsdon
,
Langmuir
16
,
8622
(
2000
).
10.
B. P.
Binks
and
J. H.
Clint
,
Langmuir
18
,
1270
(
2002
).
11.
R.
Aveyard
and
J. H.
Clint
,
J. Chem. Soc., Faraday Trans.
92
,
85
(
1996
).
12.
H.
Lehle
and
M.
Oettel
,
J. Phys. Condens. Matter
20
,
404224
(
2008
).
13.
M.
Oettel
and
S.
Dietrich
,
Langmuir
24
,
1425
(
2008
).
14.
H.
Lehle
,
M.
Oettel
, and
S.
Dietrich
,
EPL
75
,
174
(
2006
).
15.
F.
Bresme
and
N.
Quirke
,
Phys. Rev. Lett.
80
,
3791
(
1998
).
16.
F.
Bresme
and
N.
Quirke
,
J. Chem. Phys.
110
,
3536
(
1999
).
17.
F.
Bresme
and
N.
Quirke
,
Phys. Chem. Chem. Phys.
1
,
2149
(
1999
).
18.
D. L.
Cheung
and
S. A. F.
Bon
,
Phys. Rev. Lett.
102
,
066103
(
2009
).
19.
D. L.
Cheung
and
S. A. F.
Bon
,
Soft Matter
5
,
3969
(
2009
).
20.
R. J. K.
Udayana Ranatunga
,
R. J. B.
Kalescky
,
C.-c.
Chiu
, and
S. O.
Nielsen
,
J. Phys. Chem. C
114
,
12151
(
2010
).
21.
F.
Bresme
,
H.
Lehle
, and
M.
Oettel
,
J. Chem. Phys.
130
,
214711
(
2009
).
22.
L. L.
Dai
,
R.
Sharma
, and
C.-Y.
Wu
,
Langmuir
21
,
2641
(
2005
).
23.
Y.
Song
,
M.
Luo
, and
L. L.
Dai
,
Langmuir
26
,
5
(
2010
).
24.
D. L.
Cheung
,
Chem. Phys. Lett.
495
,
55
(
2010
).
25.
P.
Hopkins
,
A. J.
Archer
, and
R.
Evans
,
J. Chem. Phys.
131
,
124704
(
2009
).
26.
M.
Zeng
,
J.
Mi
, and
C.
Zhong
,
Phys. Chem. Chem. Phys.
13
,
3932
(
2011
).
27.
B.
Widom
and
J. S.
Rowlinson
,
J. Chem. Phys.
52
,
1670
(
1970
).
28.
M.
Oettel
,
A.
Domingeuz
, and
S.
Dietrich
,
Phys. Rev. E
71
,
051401
(
2005
).
29.
Y.-M.
Ban
,
R.
Tasseff
, and
D.
Kopelevich
,
Mol. Simul.
37
,
525
(
2011
).
30.
M. E.
Flatte
,
A. A.
Kornyshev
, and
M.
Urbakh
,
J. Phys. Condens. Matter
20
,
073102
(
2008
).
31.
F.
Wang
and
D.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
32.
G.
Torrie
and
J.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
33.
S.
Park
and
K.
Schulten
,
J. Chem. Phys.
120
,
5946
(
2004
).
34.
A.
Laio
and
F. L.
Gervasio
,
Rep. Prog. Phys.
71
,
126601
(
2008
).
35.
E.
Darve
,
D.
Rodríguez-Gómez
, and
A.
Pohorille
,
J. Chem. Phys.
128
,
144120
(
2008
).
36.
R.
Everaers
and
M.
Ejtehadi
,
Phys. Rev. E
67
,
041710
(
2003
).
37.
P. J.
in't Veld
,
M. K.
Petersen
, and
G. S.
Grest
,
Phys. Rev. E
79
,
021401
(
2009
).
38.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
,
1011
(
1992
).
39.
S.
Plimpton
,
J. Comp. Phys.
117
,
1
(
1995
);
40.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
41.
J. H.
Irving
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
817
(
1950
).
42.
K.
Du
,
E.
Glogowski
,
T.
Emrick
,
T. P.
Russell
, and
A. D.
Dinsmore
,
Langmuir
26
,
12518
(
2010
).
43.
B. P.
Binks
,
Curr. Opin. Colloid Interface Sci.
7
,
21
(
2002
).
44.
L.
Schimmele
,
M.
Napiorkowski
, and
S.
Dietrich
,
J. Chem. Phys.
127
,
164715
(
2007
).
45.
Y.
Djikaev
,
J. Chem. Phys.
123
,
184704
(
2005
).
46.
K.
Mecke
and
S.
Dietrich
,
Phys. Rev. E
59
,
6676
(
1999
).
47.
S. A.
Safran
,
Statistical Thermodynamics of Surfaces, Interfaces, and Membranes
(
Persus
,
Cambridge
,
1994
).
You do not currently have access to this content.