We generate inherent structures, local potential-energy minima, of the “k-space overlap potential” in two-dimensional many-particle systems using a cooling and quenching simulation technique. The ground states associated with the k-space overlap potential are stealthy (i.e., completely suppress single scattering of radiation for a range of wavelengths) and hyperuniform (i.e., infinite wavelength density fluctuations vanish). However, we show via quantitative metrics that the inherent structures exhibit a range of stealthiness and hyperuniformity depending on the fraction of degrees of freedom χ that are constrained. Inherent structures in two dimensions typically contain five-particle rings, wavy grain boundaries, and vacancy-interstitial defects. The structural and thermodynamic properties of the inherent structures are relatively insensitive to the temperature from which they are sampled, signifying that the energy landscape is relatively flat along the directions sampled, with wide shallow local minima and devoid of deep wells. Using the nudged-elastic-band algorithm, we construct paths from ground-state configurations to inherent structures and identify the transition points between them. In addition, we use point patterns generated from a random sequential addition (RSA) of hard disks, which are nearly stealthy, and examine the particle rearrangements necessary to make the configurations absolutely stealthy. We introduce a configurational proximity metric to show that only small local, but collective, particle rearrangements are needed to drive initial RSA configurations to stealthy disordered ground states. These results lead to a more complete understanding of the unusual behaviors exhibited by the family of “collective-coordinate” potentials to which the k-space overlap potential belongs.

1.
O. U.
Uche
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. E
70
,
046122
(
2004
).
2.
O. U.
Uche
,
S.
Torquato
, and
F. H.
Stillinger
,
Phys. Rev. E
74
,
031104
(
2006
).
3.
S.
Torquato
and
F. H.
Stillinger
,
Phys. Rev. Lett.
100
,
020602
(
2008
).
4.
R. D.
Batten
,
F. H.
Stillinger
, and
S.
Torquato
,
J. Appl. Phys.
104
,
033504
(
2008
).
5.
R. D.
Batten
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. Lett
103
,
050602
(
2009
).
6.
R. D.
Batten
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. E
80
,
031105
(
2009
).
7.
S.
Torquato
,
Soft Matter
5
,
1157
(
2009
).
8.
S.
Torquato
,
C. E.
Zachary
, and
F. H.
Stillinger
,
Soft Matter
7
,
3780
(
2011
).
9.
C. E.
Zachary
and
S.
Torquato
,
Phys. Rev. E
83
,
051133
(
2011
).
10.
11.
This is to be contrasted with unbounded pair interactions, whose ground states are notorioulsy difficult to predict rigorously. For example, for atoms interacting with a Lennard-Jones potential in three dimensions, the ground state is not rigorously known, although computer simulations strongly suggest that it is a slightly distorted hexagonal-close-packed crystal.
12.
Y.
Fan
,
J. K.
Percus
,
D. K.
Stillinger
, and
F. H.
Stillinger
,
Phys. Rev. A
44
,
2394
(
1991
).
13.
S.
Torquato
and
F. H.
Stillinger
,
Phys. Rev. E
68
,
041113
(
2003
).
14.
C. E.
Zachary
and
S.
Torquato
,
J. Stat. Mech.: Theory Exp.
2009
,
P12015
(
2009
).
15.
C. E.
Zachary
,
Y.
Jiao
, and
S.
Torquato
,
Phys. Rev. Lett.
106
178001
(
2011
);
[PubMed]
C. E.
Zachary
,
Y.
Jiao
, and
S.
Torquato
,
Phys. Rev. E
83
,
051308
(
2011
).
16.
M.
Florescu
,
S.
Torquato
, and
P.
Steinhardt
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
20658
(
2009
).
17.
W.
Man
,
M.
Florescu
,
K.
Matsuyama
,
P.
Yadak
,
S.
Torquato
,
P. J.
Steinhardt
, and
P.
Chaikin
, in
Proceedings of the Conference on Lasers and Electro-Optics
(
Optical Society of America
,
San Jose, California
,
2010
).
18.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University
,
Princeton, NJ
,
1996
).
19.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
20.
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Nature (London)
393
,
554
(
1998
).
21.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature (London)
410
,
259
(
2001
).
22.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
28
,
2408
(
1983
).
23.
F. H.
Stillinger
and
T. A.
Weber
,
J. Chem. Phys.
81
,
5095
(
1984
).
24.
25.
F. H.
Stillinger
and
T. A.
Weber
,
J. Chem. Phys.
87
,
2833
(
1983
).
26.
T. A.
Weber
and
F. H.
Stillinger
,
Phys. Rev. B
31
,
1954
(
1985
).
27.
T.
Weber
and
F.
Stillinger
,
Phys. Rev. B
32
,
5402
(
1985
).
28.
S.
Büchner
and
A.
Heuer
,
Phys. Rev. E
60
,
6507
(
1999
).
29.
K.
Broderix
,
K. K.
Bhattacharya
,
A.
Cavagna
,
A.
Zippelius
, and
I.
Giardina
,
Phys. Rev. Lett.
85
,
5360
(
2000
).
30.
C.
Oligschleger
and
H. R.
Schober
,
Phys. Rev. B
59
,
811
(
1999
).
31.
E.
La Nave
,
F.
Sciortino
,
P.
Tartaglia
,
M. S.
Shell
, and
P. G.
Debenedetti
,
Phys. Rev. E
68
,
32103
(
2003
).
33.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders
,
Philadelphia
,
1976
).
34.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
35.
P.
Shah
and
C.
Chakravarty
,
Phys. Rev. Lett.
88
,
255501
(
2002
).
36.
W. K.
Qi
,
Z.
Wang
,
Y.
Han
, and
Y.
Chen
,
J. Chem. Phys.
133
,
234508
(
2010
).
37.
M.
Mattarelli
,
M.
Montagna
, and
P.
Verrocchio
,
Appl. Phys. Lett.
91
,
061911
(
2007
).
38.
M.
Mattarelli
,
G.
Gasperi
,
M.
Montagna
, and
P.
Verrocchio
,
Phys. Rev. B
82
,
094204
(
2010
).
39.
S.
Torquato
,
O. U.
Uche
, and
F. H.
Stillinger
,
Phys. Rev. E
74
,
61308
(
2006
).
41.
J. E.
Dennis
and
H. H. W.
Mei
,
J. Optim. Theory Appl.
28
,
453
(
1979
).
42.
43.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
44.
G.
Henkelman
,
G.
Jóhannesson
, and
H.
Jónsson
,
Theor. Methods Condens. Phase Chem.
5
,
269
(
2002
).
45.
F. H.
Stillinger
,
Phys. Rev. E
59
,
48
(
1999
).
You do not currently have access to this content.