The morphometric approach (MA) is a powerful tool for calculating a solvation free energy (SFE) and related quantities of solvation thermodynamics of complex molecules. Here, we extend it to a solvent consisting of m components. In the integral equation theories, the SFE is expressed as the sum of m terms each of which comprises solute-component j correlation functions (j = 1, …, m). The MA is applied to each term in a formally separate manner: The term is expressed as a linear combination of the four geometric measures, excluded volume, solvent-accessible surface area, and integrated mean and Gaussian curvatures of the accessible surface, which are calculated for component j. The total number of the geometric measures or the coefficients in the linear combinations is 4m. The coefficients are determined in simple geometries, i.e., for spherical solutes with various diameters in the same multicomponent solvent. The SFE of the spherical solutes are calculated using the radial-symmetric integral equation theory. The extended version of the MA is illustrated for a protein modeled as a set of fused hard spheres immersed in a binary mixture of hard spheres. Several mixtures of different molecular-diameter ratios and compositions and 30 structures of the protein with a variety of radii of gyration are considered for the illustration purpose. The SFE calculated by the MA is compared with that by the direct application of the three-dimensional integral equation theory (3D-IET) to the protein. The deviations of the MA values from the 3D-IET values are less than 1.5%. The computation time required is over four orders of magnitude shorter than that in the 3D-IET. The MA thus developed is expected to be best suited to analyses concerning the effects of cosolvents such as urea on the structural stability of a protein.

1.
R.
Roth
,
Y.
Harano
, and
M.
Kinoshita
,
Phys. Rev. Lett.
97
,
078101
(
2006
).
2.
P. M.
König
,
R.
Roth
, and
K. R.
Mecke
,
Phys. Rev. Lett.
93
,
160601
(
2004
).
3.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic
,
London
,
2005
).
4.
N.
Baden
,
S.
Hirota
,
T.
Takabe
,
N.
Funasaki
, and
M.
Terazima
,
J. Chem. Phys.
127
,
175103
(
2007
).
5.
T.
Yoshidome
,
M.
Kinoshita
,
S.
Hirota
,
N.
Baden
, and
M.
Terazima
,
J. Chem. Phys.
128
,
225104
(
2008
).
6.
M.
Kinoshita
,
Front. Biosci.
14
,
3419
(
2009
).
7.
M.
Kinoshita
,
Int. J. Mol. Sci.
10
,
1064
(
2009
).
8.
T.
Yoshidome
and
M.
Kinoshita
,
Phys. Rev. E
79
,
030905
R
(
2009
).
9.
H.
Oshima
,
T.
Yoshidome
,
K.
Amano
, and
M.
Kinoshita
,
J. Chem. Phys.
131
,
205102
(
2009
).
10.
K.
Mecke
and
C. H.
Arns
,
J. Phys. Condens. Matter
17
,
S503
(
2005
).
11.
H.
Hansen-Goos
,
R.
Roth
,
K.
Mecke
, and
S.
Dietrich
,
Phys. Rev. Lett.
99
,
128101
(
2007
).
12.
L.-T.
Cheng
,
J.
Dzubiella
,
J. A.
McCammon
, and
B.
Li
,
J. Chem. Phys.
127
,
084503
(
2007
).
13.
L.-T.
Cheng
,
Z.
Wang
,
P.
Setny
,
J.
Dzubiella
,
B.
Li
, and
J. A.
McCammon
,
J. Chem. Phys.
131
,
144102
(
2009
).
14.
Y.
Harano
,
T.
Yoshidome
, and
M.
Kinoshita
,
J. Chem. Phys.
129
,
145103
(
2008
).
15.
T.
Yoshidome
,
Y.
Harano
, and
M.
Kinoshita
,
Phys. Rev. E
79
,
011912
(
2009
).
16.
K.
Amano
,
T.
Yoshidome
,
Y.
Harano
,
K.
Oda
, and
M.
Kinoshita
,
Chem. Phys. Lett.
474
,
190
(
2009
).
17.
K.
Oda
,
R.
Kodama
,
T.
Yoshidome
,
M.
Yamanaka
,
Y.
Sambongi
, and
M.
Kinoshita
,
J. Chem. Phys.
134
,
025101
(
2011
).
18.
Y.
Harano
,
R.
Roth
,
Y.
Sugita
,
M.
Ikeguchi
, and
M.
Kinoshita
,
Chem. Phys. Lett.
437
,
112
(
2007
).
19.
T.
Yoshidome
,
K.
Oda
,
Y.
Harano
,
R.
Roth
,
Y.
Sugita
,
M.
Ikeguchi
, and
M.
Kinoshita
,
Proteins
77
,
950
(
2009
).
20.
S.
Yasuda
,
T.
Yoshidome
,
Y.
Harano
,
R.
Roth
,
H.
Oshima
,
K.
Oda
,
Y.
Sugita
,
M.
Ikeguchi
, and
M.
Kinoshita
,
Proteins
79
,
2161
(
2011
).
21.
T.
Yoshidome
,
Y.
Ito
,
M.
Ikeguchi
, and
M.
Kinoshita
,
J. Am. Chem. Soc.
133
,
4030
(
2011
).
22.
P. G.
Kusalik
and
G. N.
Patey
,
J. Chem. Phys.
88
,
7715
(
1988
).
23.
P. G.
Kusalik
and
G. N.
Patey
,
Mol. Phys.
65
,
1105
(
1988
).
24.
M.
Kinoshita
and
D. R.
Bérard
,
J. Comput. Phys.
124
,
230
(
1996
).
25.
M.
Kinoshita
,
J. Chem. Phys.
128
,
024507
(
2008
).
26.
M.
Ikeguchi
and
J.
Doi
,
J. Chem. Phys.
103
,
5011
(
1995
).
27.
M.
Kinoshita
,
J. Chem. Phys.
116
,
3493
(
2002
).
28.
M.
Kinoshita
,
Chem. Phys. Lett.
387
,
47
(
2004
).
29.
Y.
Harano
and
M.
Kinoshita
,
Biophys. J.
89
,
2701
(
2005
).
30.
M.
Kinoshita
,
Chem. Eng. Sci.
61
,
2150
(
2006
).
31.
A. D.
MacKerell
 Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
 Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
 III
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
,
J. Phys. Chem. B
102
,
3586
(
1998
).
32.
Y.
Okamoto
,
Recent Res. Dev. Pure Appl. Chem.
2
,
1
(
1998
).
33.
T.
Morita
,
Prog. Theor. Phys.
23
,
829
(
1960
).
34.
T.
Morita
and
K.
Hiroike
,
Prog. Theor. Phys.
25
,
537
(
1961
).
35.
M.
Kinoshita
,
S.
Iba
,
K.
Kuwamoto
, and
M.
Harada
,
J. Chem. Phys.
105
,
7177
(
1996
).
36.
R.
Roth
and
M.
Kinoshita
,
J. Chem. Phys.
125
,
084910
(
2006
).
37.
M.
Kinoshita
,
S.
Iba
, and
M.
Harada
,
J. Chem. Phys.
105
,
2487
(
1996
).
38.
D. R.
Bérard
,
M.
Kinoshita
,
N. M.
Cann
, and
G. N.
Patey
,
J. Chem. Phys.
107
,
4719
(
1997
).
39.
Y.
Harano
and
M.
Kinoshita
,
J. Phys. Condens. Matter
18
,
L107
(
2006
).
40.
Y.
Harano
and
M.
Kinoshita
,
J. Chem. Phys.
125
,
024910
(
2006
).
41.
Y.
Nozaki
, and
C.
Tanford
,
J. Biol. Chem.
238
,
4074
(
1963
).
42.
M.
Roseman
, and
W. P.
Jencks
,
J. Am. Chem. Soc.
97
,
631
(
1975
).
43.
M.
Ikeguchi
,
S.
Nakamura
, and
K.
Shimizu
,
J. Am. Chem. Soc.
123
,
677
(
2001
).
You do not currently have access to this content.