Molecular beam electric field deflection experiments offer a probe to the structural and dielectric properties of isolated particles in the gas phase. However, their quantitative interpretation is still a formidable task. Despite the benefits of this method, the analysis of the deflection behavior is often complicated by various experimental and theoretical problems, including the amount of energy stored in internal and rotational modes of the deflected particle and the amount of structural asymmetry. In this contribution, we address these issues by discussing the experimentally observed field-induced deflection of Ge9, Ge10, and Ge15 clusters in comparison to quantum mechanical and classical deflection models. Additionally, we derive simple formulas to describe how the molecular beam deflection depends on the rotational temperature and the symmetry of the particle. Based on these results, we discuss to what extend molecular beam electric field deflection experiments can be used as a tool for structure determination of isolated clusters in the gas phase.

1.
H.
Scheffers
and
J.
Stark
,
Phys. Z.
35
,
625
(
1934
).
2.
J. A.
Reese
,
T. V.
Nguyen
,
T. M.
Korter
, and
D. W.
Pratt
,
J. Am. Chem. Soc.
126
,
11387
(
2004
).
3.
F.
Filsinger
,
K.
Wohlfart
,
M.
Schnell
,
J.-U.
Grabow
, and
J.
Kupper
,
Phys. Chem. Chem. Phys.
10
,
666
(
2008
).
4.
M.
Abd El Rahim
,
R.
Antoine
,
M.
Broyer
,
D.
Rayane
, and
P.
Dugourd
,
J. Phys. Chem. A
109
,
8507
(
2005
).
5.
R.
Antoine
,
I.
Compagnon
,
D.
Rayane
,
M.
Broyer
,
P.
Dugourd
,
G.
Breaux
,
F. C.
Hagemeister
,
D.
Pippen
,
R. R.
Hudgins
, and
M. F.
Jarrold
,
J. Am. Chem. Soc.
124
,
6737
(
2002
).
6.
R.
Schäfer
,
S.
Schlecht
,
J.
Woenckhaus
, and
J. A.
Becker
,
Phys. Rev. Lett.
76
,
471
(
1996
).
7.
A.
Carrera
,
M.
Mobbili
, and
E.
Marceca
,
J. Phys. Chem. A
113
,
2711
(
2009
).
8.
I.
Compagnon
,
R.
Antoine
,
D.
Rayane
,
M.
Broyer
, and
P.
Dugourd
,
Phys. Rev. Lett.
89
,
253001
(
2002
).
9.
P.
Dugourd
,
R.
Antoine
,
D.
Rayane
,
E.
Benichou
, and
M.
Broyer
,
Phys. Rev. A
62
,
011201
(
2000
).
10.
R.
Moro
,
R.
Rabinovitch
,
C.
Xia
, and
V. V.
Kresin
,
Phys. Rev. Lett.
97
,
123401
(
2006
).
11.
M. B.
Knickelbein
,
J. Chem. Phys.
115
,
5957
(
2001
).
12.
J.
Bowlan
,
A.
Liang
, and
W. A.
de Heer
,
Phys. Rev. Lett.
106
,
043401
(
2011
).
13.
S.
Schäfer
and
R.
Schäfer
,
Phys. Rev. B
77
,
205211
(
2008
).
14.
S.
Schäfer
,
B.
Assadollahzadeh
,
M.
Mehring
,
P.
Schwerdtfeger
, and
R.
Schäfer
,
J. Phys. Chem. A
112
,
12312
(
2008
).
15.
S.
Heiles
,
S.
Schäfer
, and
R.
Schäfer
,
Phys. Chem. Chem. Phys.
12
,
247
(
2010
).
16.
S.
Schäfer
,
M.
Mehring
,
R.
Schäfer
, and
P.
Schwerdtfeger
,
Phys. Rev. A
76
,
052515
(
2007
).
17.
T.
Bachels
and
R.
Schafer
,
Rev. Sci. Instrum.
69
,
3794
(
1998
).
18.
19.
T. M.
Miller
and
B.
Bederson
, in
Advances in Atomic and Molecular Physics
, edited by
S.
David Bates
and
B.
Bederson
(
Academic
,
New York
,
1989
), Vol. 25, pp.
37
60
20.
M.
Schnell
,
C.
Herwig
, and
J. A.
Becker
,
Z. Phys. Chem.
217
,
1003
(
2003
).
21.
L. P.
Maguire
,
S.
Szilagyi
, and
R. E.
Scholten
,
Rev. Sci. Instrum.
75
,
3077
(
2004
).
22.
X.
Xu
,
S.
Yin
,
R.
Moro
, and
W. A.
de Heer
,
Phys. Rev. Lett.
95
,
237209
(
2005
).
23.
C.
Kittel
,
Einführung in die Festkörperphysik
(
Oldenburg Verlag
,
München
,
1991
).
24.
T.
Bachels
,
H.-J.
Güntherodt
, and
R.
Schäfer
,
Phys. Rev. Lett.
85
,
1250
(
2000
).
25.
J.
Bulthuis
,
J. A.
Becker
,
R.
Moro
, and
V. V.
Kresin
,
J. Chem. Phys.
129
,
024101
(
2008
).
26.
P.
Dugourd
,
R.
Antoine
,
M. A.
El Rahim
,
D.
Rayane
,
M.
Broyer
, and
F.
Calvo
,
Chem. Phys. Lett.
423
,
13
(
2006
).
27.
K and K + 2 mix due the structural asymmetry and K and K + 1 mix, if μz ≠ μy ≠ 0 which is true for the discussed clusters [Sec. III].
28.
C. H.
Townes
and
A. L.
Schawlow
,
Microwave Spectroscopy
(
>Dover
,
New York
,
1975
).
29.
X.
Zhu
and
X. C.
Zeng
,
J. Chem. Phys.
118
,
3558
(
2003
).
30.
W.-J.
Zhao
and
Y.-X.
Wang
,
Chem. Phys.
352
,
291
(
2008
).
31.
D.
Bandyopadhyay
and
P.
Sen
,
J. Phys. Chem. A
114
,
1835
(
2010
).
32.
S.
Bulusu
,
S.
Yoo
, and
X. C.
Zeng
,
J. Chem. Phys.
122
,
164305
(
2005
).
33.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03, Revision B.02, Gaussian, Inc., Pittsburgh, PA,
2003
.
34.
L. A.
Curtiss
,
M. P.
McGrath
,
J.-P.
Blaudeau
,
N. E.
Davis
,
J. Robert C.
Binning
, and
L.
Radom
,
J. Chem. Phys.
103
,
6104
(
1995
).
35.
We also tested the cc-pVTZ and the aug-cc-pVTZ basis set for Ge9(A) and Ge9(B). The obtained parameters only differed at most by 5 % from the 6-311G(d) calculations. Consequently, we used the computationally less expensive Pople style basis set. The symmetry breaking for isomer A was observed for the mentioned basis sets, too.
36.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
37.
C.
Thierfelder
,
B.
Assadollahzadeh
,
P.
Schwerdtfeger
,
S.
Schäfer
, and
R.
Schäfer
,
Phys. Rev. A
78
,
052506
(
2008
).
38.
The influence of the DFT method and basis set on the simulated beam profiles is exemplarily shown for Ge15(A) in the supplementary material.
39.
Isomer A is C2V symmetric for other functionals (see supplementary information). A similar symmetry effect was observed for Si6 (Ref. 52). It is not believed that the observed effect influences the presented analysis in Sec. IV since the variation in the dipole moment is smaller than the accuracy of the reported experimental results.
40.
A.
Fielicke
,
J. T.
Lyon
,
M.
Haertelt
,
G.
Meijer
,
P.
Claes
,
J.
de Haeck
, and
P.
Lievens
,
J. Chem. Phys.
131
,
171105
(
2009
).
41.
We chose this width so that the overall shape and the fine structure is recognizable.
42.
G. F.
Bertsch
and
K.
Yabana
,
Phys. Rev. A
49
,
1930
(
1994
).
43.
S.
Pokrant
and
J.
Becker
,
Eur. Phys. J. D
16
,
165
(
2001
).
44.
The rotational temperature dependence of the beam profiles, not discussed in the text, were tested by calculating the deflection behavior at 1, 5, 10, and 50 K for the CT calculations. In the case of the QM simulations, beam profiles were simulated in 1 K steps.
45.
L. D.
Landau
and
E. M.
Lifschitz
,
Lehrbuch der theoretischen Physik: Mechanik
(
Verlag Harri Deutsch
,
Frankfurt am Main
,
1997
).
46.
J. T.
Lyon
,
P.
Gruene
,
A.
Fielicke
,
G.
Meijer
,
E.
Janssens
,
P.
Claes
, and
P.
Lievens
,
J. Am. Chem. Soc.
131
,
1115
(
2009
).
47.
A.
Lechtken
,
C.
Neiss
,
M. M.
Kappes
, and
D.
Schooss
,
Phys. Chem. Chem. Phys.
11
,
4344
(
2009
).
48.
J.
Wisdom
,
S. J.
Peale
, and
F.
Mignard
,
Icarus
58
,
137
(
1984
).
49.
X.
Xu
,
S.
Yin
,
R.
Moro
, and
W. A.
de Heer
,
Phys. Rev. B
78
,
054430
(
2008
).
50.
D.
Rayane
,
I.
Compagnon
,
R.
Antoine
,
M.
Broyer
,
P.
Dugourd
,
P.
Labastie
,
J. M.
L’Hermite
,
A.
Le Padellec
,
G.
Durand
,
F.
Calvo
,
F.
Spiegelman
, and
A. R.
Allouche
,
J. Chem. Phys.
116
,
10730
(
2002
).
51.
For technical specifications and applications of the high performance computer cluster BLUEBEAR see http://www.bear.bham.ac.uk/bluebear.
52.
P.
Karamanis
,
D.
Zhang-Negrerie
, and
C.
Pouchan
,
Chem. Phys.
331
,
417
(
2007
).
53.
See supplementary material at http://dx.doi.org/10.1063/1.3610390 for figure, table, and references therein.

Supplementary Material

You do not currently have access to this content.