We study the role of quantum fluctuations of atomic nuclei in the real-time dynamics of non-equilibrium macro-molecular transitions. To this goal we introduce an extension of the dominant reaction pathways formalism, in which the quantum corrections to the classical overdamped Langevin dynamics are rigorously taken into account to order ℏ2. We first illustrate our approach in simple cases, and compare with the results of the instanton theory. Then we apply our method to study the C7eqC7ax transition of alanine dipeptide. We find that the inclusion of quantum fluctuations can significantly modify the reaction mechanism for peptides. For example, the energy difference which is overcome along the most probable pathway is reduced by as much as 50%.

1.
A. R.
Leach
,
Molecular Podeling: Principle and Applications
, 2nd ed. (
Pearson Education
,
Harlow, England
,
2001
).
2.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics Part 1
, 3rd ed. (
Butterworth-Heinemann
,
Oxford
,
1980
).
3.
H.
Grabert
,
P.
Schramm
, and
G.-L.
Ingold
,
Phys. Rep.
168
,
115
(
1988
).
4.
J.
Ankerhold
,
P.
Pechukas
, and
H.
Grabert
,
Phys. Rev. Lett.
87
,
086802
(
2001
);
[PubMed]
J.
Ankerhold
and
H.
Grabert
,
Phys. Rev. Lett.
101
,
119903
(
2008
) (Erratum);
J.
Ankerhold
,
Phys. Rev. E
64
,
060102
(
2001
).
5.
L.
Machura
,
M.
Kostur
,
P.
Hänggi
,
P.
Talkner
, and
J.
Luczka
,
Phys. Rev. E
70
,
031107
(
2004
).
6.
W. T.
Coffey
,
Y. P.
Kalmykov
,
S. V.
Titov
, and
B. P.
Mulligan
,
J. Phys. A
40
,
F91
(
2007
);
W. T.
Coffey
,
Y. P.
Kalmykov
,
S. V.
Titov
, and
L.
Cleary
,
Phys. Rev. E
78
,
031114
(
2008
).
7.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
8.
W. H.
Miller
,
J. Chem. Phys.
62
,
1899
(
1974
).
9.
G.
Mills
and
H.
Jónsson
,
Phys. Rev. Lett.
72
,
1124
(
1994
).
10.
G.
Mills
,
H.
Jónsson
, and
G. K.
Schenter
,
Surf. Sci.
324
,
305
(
1995
).
11.
G.
Mills
,
G. K.
Schenter
,
D. E.
Makarov
, and
H.
Jónsson
,
Chem. Phys. Lett.
278
,
91
(
1997
).
12.
S.
Althorpe
,
J. Chem. Phys.
131
,
214106
(
2009
).
13.
U.
Weiss
,
Quantum Dissipative Systems
, 3rd ed. (
World Scientific
,
Singapore
,
2008
).
14.
A.
Matouschek
,
J. T.
Kellis
, Jr.
,
L.
Serrano
, and
A. R.
Fersht
,
Nature (London)
340
,
122
(
1989
).
15.
C.
Cecconi
,
E.
Shank
,
C.
Bustamante
, and
S.
Marquesee
,
Science
309
,
2057
(
2005
);
[PubMed]
E. A.
Shank
,
C.
Cecconi
,
J. W.
Dill
,
S.
Marquesee
, and
C.
Bustamante
,
Nature (London)
465
,
637
(
2010
).
16.
P.
Faccioli
,
M.
Sega
,
F.
Pederiva
, and
H.
Orland
,
Phys. Rev. Lett.
97
,
108101
(
2006
).
17.
E.
Autieri
,
P.
Faccioli
,
M.
Sega
,
F.
Pederiva
, and
H.
Orland
,
J. Chem Phys.
130
,
064106
(
2009
).
18.
G.
Mazzola
,
S. A.
Beccara
,
P.
Faccioli
, and
H.
Orland
,
J. Chem. Phys.
134
,
164109
(
2011
).
19.
R.
Elber
and
D.
Shalloway
,
J. Chem. Phys.
112
,
5539
(
2000
).
20.
M.
Sega
,
P.
Faccioli
,
F.
Pederiva
,
G.
Garberoglio
, and
H.
Orland
,
Phys. Rev. Lett.
99
,
118102
(
2007
).
21.
P.
Faccioli
,
J. Phys. Chem. B
112
,
137560
(
2008
).
22.
P.
Faccioli
,
A.
Lonardi
, and
H.
Orland
,
J. Chem. Phys.
133
,
045104
(
2010
).
23.
S. A.
Beccara
,
G.
Garberoglio
,
P.
Faccioli
, and
F.
Pederiva
,
J. Chem. Phys.
132
,
111102
(
2010
).
24.
S. A.
Beccara
,
P.
Faccioli
,
M.
Sega
,
G.
Garberoglio
,
F.
Pederiva
, and
H.
Orland
,
J. Chem. Phys.
134
,
024501
(
2011
).
25.
A. W. C.
Lau
and
T. C.
Lubensky
,
Phys. Rev. E
76
,
011123
(
2007
).
26.
D. A.
Case
,
T. E.
Cheatham
 III
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
, Jr.
,
A.
Onufriev
,
C.
Simmerling
,
B.
Wang
, and
R.
Woods
,
J. Comput. Chem.
26
,
1668
(
2005
).
27.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
,
Phys. Rev. Lett.
97
,
170201
(
2006
).
28.
G.
Henkelmann
and
H.
Jónsson
,
J. Chem. Phys.
,
113
,
9978
(
2000
).
29.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12562
(
2002
).
30.
M.
Bonomi
,
D.
Branduardi
,
G.
Bussi
,
C.
Camilloni
,
D.
Provasi
,
P.
Raiteri
,
D.
Donadio
,
F.
Marinelli
,
F.
Pietrucci
,
R. A.
Broglia
, and
M.
Parrinello
,
Comput. Phys. Commun.
180
,
1961
(
2009
).
You do not currently have access to this content.