Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on the translocation process. In particular, for large chaperone size, the translocation progress and the mean waiting time as function of the reaction coordinate exhibit pronounced sawtooth-shapes. The effects of a heterogeneous polymer sequence on the translocation dynamics is studied in terms of the translocation velocity, the probability distribution for the translocation progress, and the monomer waiting times.

1.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
(
Garland Publishing
,
New York
,
2002
).
2.
M.
Akeson
,
D.
Branton
,
J. J.
Kasianowicz
,
E.
Brandin
, and
D. W.
Deamer
,
Biophys. J.
77
,
3227
(
1999
).
3.
M.
Muthukumar
,
Annu. Rev. Biophys. Biomol. Struct.
36
,
435
(
2007
).
4.
T. A.
Rapoport
,
Nature (London)
450
,
663
(
2007
).
5.
M.
Muthukumar
,
J. Chem. Phys.
111
,
10371
(
1999
);
M.
Muthukumar
,
Phys. Rev. Lett.
86
,
3188
(
2001
);
[PubMed]
M.
Muthukumar
,
J. Chem. Phys.
118
,
5174
(
2003
).
6.
K.
Luo
,
R.
Metzler
,
T.
Ala-Nissila
, and
S.-C.
Yung
,
Phys. Rev. E
80
,
021907
(
2009
).
7.
P. K.
Purohit
,
M. M.
Inamdar
,
P. D.
Grayson
,
T. M.
Squires
,
J.
Kondev
, and
R.
Phillips
,
Biophys. J.
88
,
851
(
2005
);
[PubMed]
P. K.
Purohit
,
M. M.
Inamdar
,
P. D.
Grayson
,
T. M.
Squires
,
J.
Kondev
, and
R.
Phillips
,
Biophys. J.
93
,
705
(
2007
).
8.
A.
Meller
,
J. Phys. Condens. Matter
15
,
R581
(
2003
).
9.
M.
Wanunu
,
J.
Suntin
,
B.
McNally
,
A.
Chow
, and
A.
Meller
,
Biophys. J.
95
,
1193
(
2008
);
A. J.
Storm
,
C.
Storm
,
J. H.
Chen
,
H.
Zandbergen
,
J. F.
Joanny
, and
C.
Dekker
,
Nano Lett.
5
,
1193
(
2005
);
[PubMed]
U. F.
Keyser
,
B. N.
Koeleman
,
S.
van Dorp
,
D.
Krapf
,
R. M. M.
Smeets
,
S. G.
Lemay
,
N. H.
Dekker
, and
C.
Dekker
,
Nat. Phys.
2
,
473
(
2006
);
C.
Dekker
,
Nat. Nanotechnol.
2
,
209
(
2007
).
[PubMed]
10.
J.
Li
,
D.
Stein
,
C.
McMullan
,
D.
Branton
,
M. J.
Aziz
, and
J. A.
Golovchenko
,
Nature (London)
412
,
166
(
2001
);
A. J.
Storm
,
J. H.
Chen
,
X. S.
Ling
,
H. W.
Zandbergen
, and
C.
Dekker
,
Nature Mater.
2
,
537
(
2003
).
11.
J. J.
Kasianowicz
,
E.
Brandin
,
D.
Branton
, and
D. W.
Deamer
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
13770
(
1996
).
12.
Y.
Kantor
and
M.
Kardar
,
Phys. Rev. E
69
,
021806
(
2004
).
13.
S.
Matysiak
,
A.
Montesi
,
M.
Pasquali
,
A. B.
Kolomeisky
, and
C.
Clementi
,
Phys. Rev. Lett.
96
,
118103
(
2006
).
14.
K.
Luo
,
T.
Ala-Nissilä
,
S.-Ch.
Ying
, and
R.
Metzler
,
Europhys. Lett.
88
,
68006
(
2009
).
15.
J.
Chuang
,
Y.
Kantor
, and
M.
Kardar
,
Phys. Rev. E
65
,
011802
(
2001
).
16.
D. K.
Lubensky
and
D. R.
Nelson
,
Biophys. J.
77
,
1824
(
1999
).
17.
J. O.
Tegenfeldt
,
C.
Prinz
,
H.
Cao
,
R. L.
Huang
,
R. H.
Austin
,
S. Y.
Chou
,
E. C.
Cox
, and
J. C.
Sturm
,
Anal. Bioanal. Chem.
378
,
1678
(
2004
).
18.
K.
Luo
and
R.
Metzler
,
J. Chem. Phys.
134
,
135102
(
2011
).
19.
W.
Liebermeister
,
T. A.
Rapoport
, and
R.
Heinrich
,
J. Mol. Biol.
305
,
643
(
2001
).
20.
D.
Tomkiewicz
,
N.
Nouwen
, and
A. J. M.
Driessen
,
FEBS Lett.
581
,
2820
(
2007
).
21.
J.-F.
Chauwin
,
G.
Oster
, and
S.
Glick
,
Biophys. J.
74
,
1732
(
1998
).
22.
R. H.
Abdolvahab
,
M. R.
Ejtehadi
, and
R.
Metzler
,
Phys. Rev. E
83
,
011902
(
2011
).
23.
S. F.
Simon
,
C. S.
Peskin
, and
G. F.
Oster
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
3770
(
1992
).
24.
W.
Sung
and
P. J.
Park
,
Phys. Rev. Lett.
77
,
783
(
1996
).
25.
R. A.
Stuart
,
D. M.
Cyr
,
E. A.
Craig
, and
W.
Neupert
,
Trends Biochem. Sci.
19
(
2
),
87
(
1994
).
26.
P. L.
Krapivsky
and
K.
Mallick
,
J. Stat. Mech.: Theory Exp.
2010
,
P07007
(
2010
).
27.
R.
Zandi
,
D.
Reguera
,
J.
Rudnick
, and
W. M.
Gelbart
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
8649
(
2003
).
28.
R. H.
Abdolvahab
,
F.
Roshani
,
A.
Nourmohammad
,
M.
Sahimi
, and
M. R. R.
Tabar
,
J. Chem. Phys.
129
,
5102
(
2008
).
29.
T.
Ambjörnsson
,
M. A.
Lomholt
, and
R.
Metzler
,
J. Phys. Condens. Matter
17
,
S3945
(
2005
).
30.
T.
Ambjörnsson
and
R.
Metzler
,
Phys. Biol.
1
,
77
(
2004
).
31.
Y.
Kafri
,
D. K.
Lubensky
, and
D. R.
Nelson
,
Biophys. J.
86
,
3373
(
2004
).
32.
T.
Ambjörnsson
and
R.
Metzler
,
J. Phys. Condens. Matter
17
,
S1841
(
2005
).
33.
Wancheng
Yu
and
Kaifu
Luo
,
J. Am. Chem. Soc.
133
,
13565
(
2011
).
34.
S.
Redner
,
A Guide to First-Passage Processes
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
35.
See, for example, Ref. 21 and the disscusion in Ref. 22.
36.
C. W.
Gardiner
, Handbook of Stochastic Methods (
Springer
, New York,
2002
).
37.
Note that 〈V〉 here is defferent fom V in Eq. (7). The 〈V〉 here is the mean first passage velocity, but the V in Eq. (7) is the average velocity without considering the boundary conditions (see for instance Ref. 36).
38.
C.
Chatelain
,
Y.
Kantor
, and
M.
Kardar
,
Phys. Rev. E
78
,
021129
(
2008
).
39.
K.
Luo
,
T.
Ala-Nissila
,
S.-C.
Ying
, and
A.
Bhattacharya
,
Phys. Rev. Lett.
100
,
058101
(
2008
);
[PubMed]
K.
Luo
,
T.
Ala-Nissila
,
S.-C.
Ying
, and
A.
Bhattacharya
,
J. Chem. Phys.
126
,
145101
(
2007
).
[PubMed]
You do not currently have access to this content.