The structural properties of a-Al2O3/In0.5Ga0.5As, a-HfO2/In0.5Ga0.5As, and a-ZrO2/In0.5Ga0.5As interfaces were investigated by density-functional theory (DFT) molecular dynamics (MD) simulations. Realistic amorphous a-Al2O3, a-HfO2, and a-ZrO2 samples were generated using a hybrid classical-DFT MD “melt-and-quench” approach and tested against the experimental properties. For each stack type, two systems with different initial oxide cuts at the interfaces were investigated. All stacks were free of midgap states, but some had band-edge states which decreased the bandgaps by 0%–40%. The band-edge states were mainly produced by deformation, intermixing, and bond-breaking, thereby creating improperly bonded semiconductor atoms. The interfaces were dominated by metal-As and O−In/Ga bonds which passivated the clean surface dangling bonds. The valence band-edge states were mainly localized at improperly bonded As atoms, while conduction band-edge states were mainly localized at improperly bonded In and Ga atoms. The DFT-MD simulations show that electronically passive interfaces can be formed between high-κ oxides dielectrics and InGaAs if the processing does not induce defects because on a short time scale the interface spontaneously forms electrically passive bonds as opposed to bonds with midgap states.

1.
G.
Nicholas
,
T. J.
Grasby
,
D.
Lgoni
,
C. S.
Beer
,
J.
Parsons
,
M
Meuris
, and
M. M.
Heyns
,
IEEE Electron Dev. Lett.
28
,
825
(
2007
).
2.
S.
Takagi
,
T.
Tezuka
,
T.
Irisawa
,
S.
Nakaharai
,
T.
Numata
,
K.
Usuda
,
N.
Sugiyama
,
M.
Shichijo
,
R.
Nakane
, and
S.
Sugahara
,
Solid-State Electron.
51
,
526
(
2007
).
3.
E. J.
Kim
,
E.
Chagarov
,
J.
Cagnon
,
A. C.
Kummel
,
P. M.
Asbeck
,
S.
Stemmer
,
K. C.
Saraswat
, and
P. C.
McIntyre
,
J. Appl. Phys.
106
,
124508
(
2009
).
4.
K.-Y.
Tse
and
J.
Robertson
,
J. Appl. Phys.
100
,
093713
(
2006
).
5.
J.-H.
Ha
,
K.-I.
Seo
,
P. C.
McIntyre
,
K. C.
Sarawat
, and
K.
Cho
,
Appl. Phys. Lett.
90
,
112911
(
2007
).
6.
P.
Broqvist
and
A.
Pasquarello
,
Microelectron. Eng.
84
,
2022
(
2007
).
7.
J.
Godet
,
P.
Broqvist
, and
A.
Pasquarello
,
Appl. Phys. Lett.
91
,
262901
(
2007
).
8.
P.
Broqvist
,
A.
Alkauskas
, and
A.
Pasquarello
,
Appl. Phys. Lett.
92
,
132911
(
2008
).
9.
J.
Robertson
and
L. A.
Lin
,
Microelectron. Eng.
88
,
373
(
2011
).
10.
L.
Lin
and
J.
Robertson
,
Appl. Phys. Lett.
98
,
082903
(
2011
).
11.
W. C.
Wang
,
K.
Xiong
,
R. M.
Wallace
, and
K.
Cho
,
J. Phys. Chem. C
114
,
22610
(
2010
).
12.
W. C.
Wang
,
K.
Xiong
,
G.
Lee
,
M.
Huang
,
R. M.
Wallace
, and
K.
Cho
,
Appl. Surf. Sci.
256
,
6569
(
2010
).
13.
E.
Chagarov
and
A.
Kummel
,
Surf. Sci. Lett.
602
,
L74
(
2008
).
14.
E. A.
Chagarov
and
A. C.
Kummel
,
J. Chem. Phys.
130
,
124717
(
2009
).
15.
E. A.
Chagarov
and
A. C.
Kummel
,
ECS Trans.
16
,
773
(
2008
);
E. A.
Chagarov
and
A. C.
Kummel
,
Surf. Sci.
603
,
3191
(
2009
).
16.
See supplementary material at http://dx.doi.org/10.1063/1.3657439 for details of amorphous sample generation and oxide/InGaAs DFT-MD annealing.
17.
G.
Gutierrez
and
B.
Johansson
,
Phys. Rev. B
65
,
104202
(
2002
).
18.
P.
Lamparter
and
R.
Kniep
,
Physica B
234-236
,
405
(
1997
).
19.
H.
Momida
,
T.
Hamada
, and
Y.
Takagi
,
Phys. Rev. B
73
,
054108
(
2006
).
20.
X.
Zhao
,
D.
Ceresoli
, and
D.
Vanderbilt
,
Phys. Rev. B
71
,
085107
(
2005
).
21.
D.
Vanderbilt
,
X.
Zhao
, and
D.
Ceresoli
,
Thin Solid Films
486
,
125
(
2005
).
22.
D.
Ceresoli
and
D.
Vanderbilt
,
Phys. Rev. B
74
,
125108
(
2006
).
23.
V.
Gritsenko
,
D.
Gritsenko
,
S.
Shaimeev
,
V.
Aliev
,
K.
Nasyrov
,
S.
Erenburg
,
V.
Tapilin
,
H.
Wong
,
M. C.
Poon
,
J. H.
Lee
,
J. W.
Lee
, and
C. W.
Kim
,
Microelectron. Eng.
81
,
524
(
2005
).
24.
A. V.
Shaposhnikov
,
D. V.
Gritsenko
,
I. P.
Petrenko
,
O. P.
Pchelyakov
,
V. A.
Gritsenko
,
S. B.
Erenburg
,
N. V.
Bausk
,
A. M.
Badalyan
,
Yu. V.
Shubin
,
T. P.
Smirnova
,
H.
Wong
, and
C. W.
Kim
,
J. Exp. Theor. Phys.
102
,
799
(
2006
).
25.
P.
Schelling
,
S.
Phillpot
, and
D.
Wolf
,
J. Am. Ceram. Soc.
84
(
7
),
1609
(
2001
).
26.
P.
Broqvist
and
A.
Pasquarello
,
Appl. Phys. Lett.
90
,
082907
(
2007
).
27.
J.-P.
Crocombette
and
D.
Ghaleb
,
J. Nucl. Mater.
257
,
282
(
1998
).
28.
H.
Takeuchi
,
D.
Ha
, and
T.-J.
King
,
J. Vac. Sci. Technol. A
22
,
1337
(
2004
).
29.
V.
Gritsenkoa
,
D.
Gritsenkoa
,
S.
Shaimeeva
,
V.
Alieva
,
K.
Nasyrova
,
S.
Erenburgb
,
V.
Tapilinc
,
H.
Wongd
,
M. C.
Poone
,
J. H.
Leef
,
J.-W.
Leef
, and
C. W.
Kimf
,
Microelectron. Eng.
81
,
524
(
2005
).
30.
T. V.
Perevalov
,
V. A.
Gritsenko
,
S. B.
Erenburg
,
A. M.
Badalyan
,
H.
Wong
, and
C. W.
Kim
,
J. Appl. Phys.
101
,
053704
(
2007
).
31.
R. W.
Godby
,
M.
Schlüter
, and
L. J.
Sham
,
Phys. Rev. B
37
,
10159
(
1988
).
32.
S.
Sayan
,
R. A.
Bartynski
,
X.
Zhao
,
E. P.
Gusev
,
D.
Vanderbilt
,
M.
Croft
,
M.
Banaszak-Holl
, and
E.
Garfunkel
,
Phys. Status Solidi B
241
,
2246
(
2004
).
33.
E.
Bersch
,
S.
Rangan
,
R. A.
Bartynski
,
E.
Garfunkel
, and
E.
Vescovo
,
Phys. Rev. B
78
,
085114
(
2008
).
34.
R.
Puthenkovilakam
and
J. P.
Chang
,
Appl. Phys. Lett.
84
,
1353
(
2004
);
S.
Miyazaki
,
J. Vac. Sci. Technol. B
19
,
2212
(
2001
).
35.
T.
Ito
,
M.
Maeda
,
K.
Nakamura
,
H.
Kato
, and
Y.
Ohki
,
J. Appl. Phys.
97
,
054104
(
2005
).
36.
M. C.
Cheynet
,
S.
Pokrant
,
F. D.
Tichelaar
, and
J.-L.
Rouviere
,
J. Appl. Phys.
101
,
054101
(
2007
).
37.
J.
Shen
,
J. B.
Clemens
,
E.
Chagarov
,
D. L.
Feldwinn
,
W.
Melitz
,
T.
Song
,
S. R.
Bishop
,
A. C.
Kummel
, and
R.
Droopad
,
Surf. Sci.
604
,
1757
(
2010
).
38.
K.
Shiraishi
,
J. Phys. Soc. Jpn.
59
,
3455
(
1990
).
39.
G.
Goryl
,
D.
Toton
,
M.
Goryl
,
N.
Tomaszewska
, and
J. J.
Kolodziej
,
Surf. Sci.
605
,
2073
(
2011
).
40.
C.
Kumpf
,
L. D.
Marks
,
D.
Ellis
,
D.
Smilgies
,
E.
Landemark
,
M.
Nielsen
,
R.
Feidenhans
,
J.
Zegenhagen
,
O.
Bunk
,
J. H.
Zeysing
,
Y.
Su
, and
R. L.
Johnson
,
Phys. Rev. Lett.
86
,
3586
(
2001
).
41.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
);
see http://lammps.sandia.gov/index.html for information about LAMMPS code.
43.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
44.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
45.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
46.
G.
Kresse
and
J.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
47.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
49.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
(
1992
).
50.
Y.
Hwang
,
R.
Engel-Herbert
, and
S.
Stemmer
,
Appl. Phys. Lett.
98
,
052911
(
2011
).
51.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jonsson
,
Comput. Mater. Sci.
36
,
354
(
2006
).
52.
E.
Sanville
,
S.
Kenny
,
R.
Smith
, and
G.
Henkelman
,
J. Comput. Chem.
28
,
899
(
2007
).
53.
E.
Chagarov
and
A.
Kummel
(unpublished).
54.
S. J.
Clark
,
L.
Lin
, and
J.
Robertson
,
Microelectron. Eng.
88
,
1464
(
2011
).
55.
W.
Wang
,
C. L.
Hinkle
,
E. M.
Vogel
,
K.
Cho
, and
R. M.
Wallace
,
Microelectron. Eng.
88
,
1061
(
2011
).
56.
J.
Robertson
and
L.
Lin
, in
Proceedings of the 2010 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, pp.
32
6
1−32
6
(
2010
) (
IEEE Publishing
,
New York
).
57.
J.
Robertson
and
L.
Lin
,
Microelectron. Eng.
88
,
1440
(
2011
).
58.
M.
Passlack
,
R.
Droopad
,
Z.
Yu
,
N.
Medendorp
,
D.
Braddock
,
X. W.
Wang
,
T. P.
Ma
, and
T.
Büyüklimanli
,
IEEE Electron. Dev. Lett.
29
,
1181
(
2008
).
59.
M.
Passlack
,
R.
Droopad
, and
G.
Brammertz
,
IEEE Trans. Electron. Dev
57
,
2944
(
2010
).
60.
M.
Passlack
,
Z.
Yu
,
R.
Droopad
,
B.
Bowers
,
C.
Overgaard
,
J.
Abrokwah
, and
A. C.
Kummel
,
J. Vac. Sci. Technol. B
17
,
49
(
1999
).
61.
M. J.
Hale
,
S. I.
Yi
,
J. Z.
Sexton
,
A. C.
Kummel
, and
M.
Passlack
,
J. Chem. Phys.
119
,
6719
(
2003
).
62.
W.
Priyantha
,
G.
Radhakrishnan
,
R.
Droopad
, and
M.
Passlack
,
J. Crystal Growth
323
,
103
(
2011
).
63.
C. L.
Hinkle
,
M.
Milojevic
,
B.
Brennan
,
A. M.
Sonnet
,
F. S.
Aguirre-Tostado
,
G. J.
Hughes
,
E. M.
Vogel
, and
R. M.
Wallace
,
Appl. Phys. Lett.
94
,
162101
(
2009
).
64.
C. L.
Hinkle
,
M.
Milojevic
,
A. M.
Sonnet
,
H. C.
Kim
,
J.
Kim
,
E. M.
Vogel
, and
R. M.
Wallace
,
ECS Trans.
19
,
387
(
2009
).
65.
D. L.
Winn
,
M. J.
Hale
,
T. J.
Grassman
,
J. Z.
Sexton
, and
A. C.
Kummel
,
J. Chem. Phys.
127
,
134705
(
2007
).
66.
M.
Milojevic
,
F. S.
Aguirre-Tostado
,
C. L.
Hinkle
,
H. C.
Kim
,
E. M.
Vogel
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
93
,
202902
(
2008
).
67.
F. S.
Aguirre-Tostado
,
M.
Milojevic
,
B.
Lee
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
93
,
172907
(
2008
).
68.
F. S.
Aguirre-Tostado
,
M.
Milojevic
,
C. L.
Hinkle
,
E. M.
Vogel
,
R. M.
Wallace
,
S.
McDonnell
, and
G. J.
Hughes
,
Appl. Phys. Lett.
92
,
171906
(
2008
).
69.
A. P.
Kirk
,
M.
Milojevic
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
96
,
202905
(
2010
).
70.
H. D.
Trinh
,
E. Y.
Chang
,
P. W.
Wu
,
Y. Y.
Wong
,
C. T.
Chang
,
Y. F.
Hsieh
,
C. C.
Yu
,
H. Q.
Nguyen
,
Y. C.
Lin
,
K. L.
Lin
, and
M. K.
Hudait
,
Appl. Phys. Lett.
97
,
042903
(
2010
).
71.
B.
Shin
,
J. B.
Clemens
,
M. A.
Kelly
,
A. C.
Kummel
, and
P. C.
McIntyre
,
Appl. Phys. Lett.
96
,
252907
(
2010
).
72.
E. J.
Kim
,
E.
Chagarov
,
J.
Cagnon
,
Y.
Yuan
,
A. C.
Kummel
,
P. M.
Asbeck
,
S.
Stemmer
,
K. C.
Saraswat
, and
P. C.
McIntyre
,
J. Appl. Phys.
106
,
124508
(
2009
).
73.
B.
Shin
,
D.
Choi
,
J. S.
Harris
, and
P. C.
McIntyre
,
Appl. Phys. Lett.
93
,
052911
(
2008
).
74.
P. C.
McIntyre
,
Y.
Oshima
,
E.
Kim
,
E.
Chagarov
,
J.
Cagnon
,
K. C.
Saraswat
,
S.
Stemmer
, and
A. C.
Kummel
, in
Proceeding of the Semiconductor Interface Specialists Conference (SISC)
, San Diego, CA,
2008
, p.
133
(
IEEE Publishing
,
New York
)..
75.
P. C.
McIntyre
,
Y.
Oshima
,
E.
Kim
, and
K. C.
Saraswat
,
Microelectron. Eng.
86
,
1536
(
2009
).
76.
J. B.
Clemens
,
E. A.
Chagarov
,
M.
Holland
,
R.
Droopad
,
J.
Shen
, and
A. C.
Kummel
,
J. Chem. Phys.
133
,
154704
(
2010
).
77.
W.
Melitz
,
T.
Kent
,
J.
Shen
, and
A. C.
Kummel
, Surface cleaning and monolayer seeding for ALD of high-k studied by in situ STM, STS, and XPS, in
Proceedings of the AVS 2011
, Nashville, TN,
2011
(
American Institute of Physics
,
New York
).
78.
Y. H.
Chang
,
M. L.
Huang
,
P.
Chang
,
C. A.
Lin
,
Y. J.
Chu
,
B. R.
Chen
,
C. L.
Hsu
,
J.
Kwo
,
T. W.
Pi
, and
M.
Hong
,
Microelectron. Eng.
88
,
440
(
2011
).
79.
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
,
Microelectron. Eng.
86
,
1756
(
2009
).
80.
J.
Huang
,
N.
Goel
,
H.
Zhao
,
C. Y.
Kang
,
K. S.
Min
,
G.
Bersuker
,
S.
Oktyabrsky
,
S.
Koveshnikov
,
J. C.
Lee
,
P.
Majhi
,
W.
Tsai
,
P. D.
Kirsch
,
H.-H.
Tseng
, and
R.
Jammy
, in
Proceedings of the International Electron Device Meeting (IEDM)
, Baltimore, MD,
2009
, p.
13
5
(
IEEE Publishing
,
New York
).
81.
Y.
Xuan
,
T.
Shen
,
Y. Q.
Wu
,
M.
Xu
, and
P. D.
Ye
, in
Proceedings of the 66th Annual Device Research Conference (DRC)
, Santa Barbara, CA,
2008
, pp.
37−38
(
IEEE Publishing
,
New York
).
82.
Y.
Xuan
,
T.
Shen
,
M.
Xu
,
Y. Q.
Wu
, and
P. D.
Ye
, in
Proceedings of the IEDM
, San Francisco, CA,
2008
, p.
371
(
IEEE Publishing
,
New York
).
83.
Y.
Xuan
,
Y. Q.
Wu
, and
P. D.
Ye
,
IEEE Electron Device Lett.
29
,
294
(
2008
).
84.
M.
Egard
,
L.
Ohlsson
,
B. M.
Borg
,
L.-E.
Wernersson
, and
E.
Lind
, in
Proceedings of the Abstracts of the IEEE Device Research Conference 2011
, Santa Barbara, CA, 28 June
2011
(
IEEE Publishing
,
New York
).
85.
J.
Robertson
,
Microelectron. Eng.
86
,
1558
(
2009
).
86.
J.
Robertson
,
Appl. Phys. Lett.
94
,
152104
(
2009
).
87.
P. D.
Ye
,
Y.
Xuan
,
Y. Q.
Wu
, and
M.
Xu
,
ECS Trans.
19
,
605
(
2009
).
88.
U.
Singisetti
,
M. A.
Wistey
,
G. J.
Burek
,
A. K.
Baraskar
,
J.
Cagnon
,
B.
Thibeault
,
A. C.
Gossard
,
S.
Stemmer
,
M. J. W.
Rodwell
,
E.
Kim
,
B.
Shin
,
P. C.
McIntyre
, and
Y.-J.
Lee
, in
Proceedings of the IPRM’09
, Newport Beach, CA,
2009
, p.
120
(
IEEE Publishing
,
New York
).
89.
M.
Caymax
,
G.
Brammertz
,
A.
Delabie
,
S.
Sioncke
,
D.
Lin
,
M.
Scarrozza
,
G.
Pourtois
,
W.-E.
Wang
,
M.
Meuris
, and
M.
Heyns
,
Microelectron. Eng.
86
,
1529
(
2009
).
90.
H.
Zhao
,
Y.-T.
Yen-Ting Chen
,
J. H.
Yum
,
Y.
Wang
,
N.
Goel
, and
J. C.
Lee
,
Appl. Phys. Lett.
94
,
193502
(
2009
).
91.
S. J.
Bentley
,
M.
Holland
,
L.
Xu
,
G. W.
Paterson
,
Z.
Haiping
,
O.
Ignatova
,
D.
Macintyre
,
S.
Thoms
,
A.
Asenov
,
S.
Byungha
,
A.
Jaesoo
,
P. C.
McIntyre
, and
I. G.
Thayne
,
IEEE Electron Dev. Lett.
32
,
494
(
2001
).
92.
M.
Radosavljevic
,
B.
Chu-Kung
,
S.
Corcoran
,
G.
Dewey
,
M. K.
Hudait
,
J. M.
Fastenau
,
J.
Kavalieros
,
W. K.
Liu
,
D.
Lubyshev
,
M.
Metz
,
K.
Millard
,
N.
Mukherjee
,
W.
Rachmady
,
U.
Shah
, and
R.
Chau
, in
Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM)
, Baltimore, MD,
2009
, pp.
1
4
(
IEEE Publishing
,
New York
).
93.
M.
Radosavljevic
,
G.
Dewey
,
J. M.
Fastenau
,
J.
Kavalieros
,
R.
Kotlyar
,
B.
Chu-Kung
,
W. K.
Liu
,
D.
Lubyshev
,
M.
Metz
,
K.
Millard
,
N.
Mukherjee
,
L.
Pan
,
R.
Pillarisetty
,
W.
Rachmady
,
U.
Shah
, and
R.
Chau
, in
Proceedings of the 2010 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA,
2010
, pp.
6
1
1−6
1
(
IEEE Publishing
,
New York
).
94.
R.
Suri
,
D. J.
Lichtenwalner
, and
V.
Misra
,
Appl. Phys. Lett.
96
,
112905
(
2010
).
95.
Y. C.
Chang
,
M. L.
Huang
,
K. Y.
Lee
,
Y. J.
Lee
,
T. D.
Lin
,
M.
Hong
,
J.
Kwo
,
T. S.
Lay
,
C. C.
Liao
, and
K. Y.
Cheng
,
Appl. Phys. Lett.
92
,
072901
(
2008
).
96.
M. L.
Huang
,
Y. C.
Chang
,
Y. H.
Chang
,
T. D.
Lin
,
J.
Kwo
, and
M.
Hong
,
Appl. Phys. Lett.
94
,
052106
(
2009
).
97.
T. D.
Lin
,
P.
Chang
,
H. C.
Chiu
,
Y. C.
Chang
,
C. A.
Lin
,
W. H.
Chang
,
Y. J.
Lee
,
Y. H.
Chang
,
M. L.
Huang
,
J.
Kwo
, and
M.
Hong
, in
Proceedings of the 2009 IEEE International Conference on Indium Phosphide and Related Materials
, Newport Beach, CA,
2009
, p.
94
(
IEEE Publishing
,
New York
).
98.
D. C.
Suh
,
Y. D.
Cho
,
D.-H.
Ko
,
K. B.
Chung
,
M.-H.
Cho
, and
Y.
Lee
,
ECS Trans.
19
,
233
(
2009
).
99.
Y.
Hwang
,
R.
Engel-Herbert
,
N. G.
Rudawski
, and
S.
Stemmer
,
J. Appl. Phys.
108
,
034111
(
2010
).
100.
S.
Oktyabrsky
,
V.
Tokranov
,
S.
Koveshnikov
,
M.
Yakimov
,
R.
Kambhampati
,
H.
Bakhru
,
R.
Moore
, and
W.
Tsai
,
J. Cryst. Growth
311
,
1950
(
2009
).
101.
J. B.
Clemens
,
S. R.
Bishop
,
J. S.
Lee
,
A. C.
Kummel
, and
R.
Droopad
,
J. Chem. Phys.
132
,
244701
(
2010
).
102.
P.
Chang
,
W. C.
Lee
,
M. L.
Huang
,
Y. J.
Lee
,
M.
Hong
, and
J.
Kwo
,
J. Vac. Sci. Technol. B
28
,
C3A9
(
2010
).
103.
Y. Q.
Wu
,
M.
Xu
,
Y.
Xuan
,
P. D.
Ye
,
J.
Li
,
Z.
Cheng
, and
A.
Lochtefeld
, in
Proceedings of the 17th Biennial UGIM 2008
,
2008
, pp.
49
52
(
IEEE Publishing
,
New York
).
104.
S.
Koveshnikov
,
N.
Goel
,
P.
Majhi
,
H.
Wen
,
M. B.
Santos
,
S.
Oktyabrsky
,
V.
Tokranov
,
R.
Kambhampati
,
R.
Moore
,
F.
Zhu
,
J.
Lee
, and
W.
Tsai
,
Appl. Phys. Lett.
92
,
222904
(
2008
).
105.
S.
Koveshnikov
,
N.
Goel
,
P.
Majhi
,
C. K.
Gaspe
,
M. B.
Santos
,
S.
Oktyabrsky
,
V.
Tokranov
,
M.
Yakimov
,
R.
Kambhampati
,
H.
Bakhru
,
F.
Zhu
,
J.
Lee
, and
W.
Tsai
, in
Proceedings of the 66th Annual Device Research Conference (DRC)
, Santa Barbara, CA,
2008
, pp.
43−44
(
IEEE Publishing
,
New York
).
106.
S.
Stemmer
, in
Proceedings of the 2009 VLSI Technology Conference
, Kyoto, Japan,
2009
(
IEEE Publishing
,
New York
).

Supplementary Material

You do not currently have access to this content.