Explanation of decoherence and quasi-equilibrium in systems with few degrees of freedom demands a deep theoretical analysis that considers the observed system as an open quantum system. In this work, we study the problem of decoherence of an observed system of quantum interacting particles, coupled to a quantum lattice. Our strategy is based on treating the environment and the system-environment Hamiltonians fully quantum mechanically, which yields a representation of the time evolution operator useful for disentangling the different time scales underlying in the observed system dynamics. To describe the possible different stages of the dynamics of the observed system, we introduce quantum mechanical definitions of essentially isolated, essentially adiabatic, and thermal-contact system-environment interactions. This general approach is then applied to the study of decoherence and quasi-equilibrium in proton nuclear magnetic resonance (1H NMR) of nematic liquid crystals. A summary of the original results of this work is as follows. We calculate the decoherence function and apply it to describe the evolution of a coherent spin state, induced by the coupling with the molecular environment, in absence of spin-lattice relaxation. By assuming quantum energy conserving or non-demolition interactions, we identify an intermediate time scale, between those controlled by self-interactions and thermalization, where coherence decays irreversibly. This treatment is also adequate for explaining the buildup of quasi-equilibrium of the proton spin system, via the process we called eigen-selectivity. By analyzing a hypothetical time reversal experiment, we identify two sources of coherence loss which are of a very different nature and give rise to distinct time scales of the spin dynamics: (a) reversible or adiabatic quantum decoherence and (b) irreversible or essentially adiabatic quantum decoherence. Local irreversibility arises as a consequence of the uncertainty introduced by the coupling with an infinite quantum environment. The reversible part can be represented by a semiclassical model, similar to standard line-shape adiabatic models. By exploiting the separation existing between the time scales of the spin coherences and the irreversible decoherence, we present a novel technique to obtain the orientational molecular distribution function for a nematic liquid crystal. The procedure is based on the comparison of the observed coherence time evolution and numerical calculation under the adiabatic quantum decoherence approach. As an example, it is used the experimental free induction decay from a nematic PAAd6 sample to extract such an orientational distribution. This is the first theoretical description of the experimental liquid crystal NMR signal in the time domain. On the contrary, the irreversible decoherence is intrinsically full-quantum mechanical, as it is governed by the commutation properties of the environment and the spin-lattice Hamiltonians. Consistently, it depends on the molecular correlation in a decisive way, since it vanishes under a mean-field model for the molecular dynamics. The results of this work can contribute to the understanding of the open question of the applicability of the spin-temperature concept in spin systems with few degrees of freedom.

1.
W. H.
Zurek
,
Rev. Mod. Phys.
75
,
715
(
2003
).
2.
E.
Joos
,
H. D.
Zeh
,
C.
Kiefer
,
D. J. W.
Giulini
,
J.
Kupsch
, and
I. O.
Stamatescu
,
Decoherence and the Appearance of a Classical World in Quantum Theory
, 2nd ed. (
Springer
,
Berlin
,
2010
).
3.
P.
Capellaro
,
J. S.
Hodges
,
T. F.
Havel
, and
D. G.
Cory
,
J. Chem. Phys.
125
,
044514
(
2006
).
4.
L.
Viola
,
E. M.
Fortunato
,
M. A.
Pravia
,
E.
Knill
,
R.
Laflamme
, and
D. G.
Cory
,
Science
293
,
2059
(
2001
).
5.
W.
Zhang
,
N.
Konstantinidis
,
K. A.
Al-Hassanieh
, and
V. V.
Dobrovitski
,
J. Phys.: Condens. Matter
19
,
083202
(
2007
).
6.
M.
Palma
,
K. A.
Suominen
, and
A.
Ekert
,
Proc. R. Soc. London
452
,
567
(
1996
).
7.
D.
Mozyrsky
and
V.
Privman
,
J. Stat. Phys.
91
,
787
(
1998
).
8.
V.
Privman
,
J. Comput. Theor. Nanosci.
7
(
9
),
1635
(
2010
).
9.
M.
Merkli
,
I. M.
Sigal
, and
G. P.
Berman
,
Phys. Rev. Lett.
98
,
130401
(
2007
).
10.
M.
Merkli
,
G. P.
Berman
, and
I. M.
Sigal
,
Adv. Theor. Math. Phys.
169710
(
2010
).
11.
L.
Muhlbacher
and
J.
Ankerhold
,
Phys. Rev. B
74
,
165105
(
2006
).
12.
G.
Granucci
,
M.
Persico
, and
Alberto
Zoccante
,
J. Chem. Phys.
133
,
134111
(
2010
).
13.
J.
Baum
,
M.
Munowitz
,
A. N.
Garroway
, and
A.
Pines
,
J. Chem. Phys.
83
,
2015
(
1985
).
14.
M.
Tomaselli
,
S.
Hediger
,
D.
Suterand
, and
R. R.
Ernst
,
J. Chem. Phys.
105
,
10672
(
1996
).
15.
I. S.
Oliveira
,
T. J.
Bonagamba
,
R. S.
Sarthour
,
J. C. C.
Freitas
, and
E. R.
deAzevedo
,
NMR Quantum Information Processing
(
Elsevier
,
Amsterdam
,
2007
).
16.
H. G.
Krojansky
and
D.
Suter
,
Phys. Rev. Lett.
97
,
150503
(
2006
).
17.
A.
Fedorov
and
L.
Fedichkin
,
J. Phys.: Condens. Matter
18
,
3217
(
2006
).
18.
D.
Suter
and
T. S.
Mahesh
,
J. Chem. Phys.
128
,
052206
(
2009
).
19.
G. A.
Álvarez
and
D.
Suter
,
Phys. Rev. Lett.
104
,
230403
(
2010
).
20.
H.
Cho
,
D.
Cory
, and
C.
Ramanathan
,
J. Chem. Phys.
118
(
8
),
3686
(
2003
).
21.
P. R.
Levstein
,
A. K.
Chattah
,
H. M.
Pastawski
,
J.
Raya
, and
J.
Hirschinger
,
J. Chem. Phys.
121
,
7313
(
2004
).
22.
H. H.
Segnorile
,
C. J.
Bonin
,
C. E.
González
,
R. H.
Acosta
, and
R. C.
Zamar
,
Solid State Nucl. Magn. Reson.
36
,
77
(
2009
).
23.
L.
Buljubasich
,
G. A.
Monti
,
R. H.
Acosta
,
C. J.
Bonin
,
C. E.
González
, and
R. C.
Zamar
,
J. Chem. Phys.
130
,
024501
(
2009
).
24.
J. S.
Lee
and
K.
Khitrin
,
J. Chem. Phys.
122
,
041101
(
2005
).
25.
C. E.
González
,
H. H.
Segnorile
, and
R. C.
Zamar
,
Phys. Rev. E
83
,
011705
(
2011
).
26.
P.
De Gennes
and
J.
Proust
,
The Physics of Liquid Crystals
, 2nd ed. (
Oxford University Press
,
Oxford
,
1993
).
27.
R. Y.
Dong
,
Nuclear Magnetic Resonance of Liquid Crystals
, 2nd ed. (
Springer Verlag
,
New York
,
1997
).
28.
F.
Noack
,
M.
Notter
, and
W.
Wiess
,
Liq. Cryst.
3
,
907
(
1988
).
29.
R.
Kimmich
and
E.
Anoardo
,
Prog. Nucl. Magn. Reson. Spectrosc.
44
,
257
(
2004
).
30.
R. C.
Zamar
,
E.
Anoardo
,
O.
Mensio
,
S.
Becker
, and
F.
Noack
,
J. Chem. Phys.
109
,
1120
(
1998
).
31.
O.
Mensio
,
R. C.
Zamar
,
E.
Anoardo
,
R. H.
Acosta
, and
R. Y.
Dong
,
J. Chem. Phys.
123
,
204911
(
2005
).
32.
H.
Schmiedel
,
S.
Grande
, and
B.
Hillner
,
Phys. Lett.
91A
,
365
(
1982
).
33.
O.
Mensio
,
C. E.
González
, and
R. C.
Zamar
,
Phys. Rev. E
71
,
011704
(
2005
).
34.
O.
Mensio
,
C. E.
González
,
R. C.
Zamar
,
D. J.
Pusiol
, and
R. Y.
Dong
,
Physica B
320
,
416
(
2002
).
35.
R. G. C. Mc.
Elroy
,
R. T.
Thompson
, and
M. M.
Pintar
,
Phys. Rev. A
10
,
403
(
1974
).
36.
D.
Sakellarius
,
P.
Hodgkinson
, and
L.
Emsley
,
Chem. Phys. Lett.
293
,
110
(
1998
).
37.
R.
Bruchsweiler
and
R.
Ernst
,
Chem. Phys. Lett.
264
,
393
(
1997
).
38.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Oxford
,
2002
).
39.
V.
Privman
,
Mod. Phys. Lett.
16
,
459
(
2002
).
40.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Oxford University Press
,
London
,
1961
).
41.
H. H.
Segnorile
, Ph.D. dissertation,
Universidad Nacional de Córdoba
, Argentina,
2009
.
42.
St.
Limmer
,
H.
Schmiedel
,
B.
Hillner
,
A.
Losche
, and
S.
Grande
,
J. Phys.
41
,
869
(
1980
).
43.
C. M.
Sánchez
,
P. R.
Levstein
,
R. H.
Acosta
, and
A. K.
Chattah
,
Phys. Rev. A
80
,
012328
(
2009
).
44.
S. I.
Doronin
,
E.
Fel'dman
,
E.
Kuznetsova
,
G. B.
Furman
, and
S. D.
Goren
,
Phys. Rev. B
76
,
144405
(
2007
).
45.
S. I.
Doronin
,
E.
Fel'dman
,
E.
Kuznetsova
,
G. B.
Furman
, and
S. D.
Goren
,
Pis'ma Zh. Eksp. Teor. Fiz.
86
(
1
),
26
(
2007
).
46.
B.
Furman
and
S. D.
Goren
,
J. Phys.: Condens. Matter
17
,
4501
(
2005
).
47.
H. H.
Segnorile
,
L.
Barberis
,
C. E.
González
, and
R. C.
Zamar
,
Phys. Rev. E
74
,
051702
(
2006
).
48.
R.
Dasa
,
R.
Bhattacharyyaa
, and
A.
Kumar
,
J. Magn. Reson.
170
,
310
(
2004
).
49.
M.
Marjanska
,
I. L.
Chuang
, and
M. G.
Kubinec
,
J. Chem. Phys.
112
,
5095
(
2000
).
50.
J. S.
Lee
and
K.
Khitrin
,
Phys. Rev. Lett.
94
,
150504
(
2005
).
51.
S.
Jen
,
N. A.
Clark
,
P. S.
Pershan
, and
E. B.
Priestley
,
Phys. Rev. Lett.
31
(
26
),
1552
(
1973
).
52.
S.
Jen
,
N. A.
Clark
,
P. S.
Pershan
, and
E. B.
Priestley
,
J. Chem. Phys.
66
(
10
),
4635
(
1977
).
53.
A.
Sanchez-Castillo
,
M. A.
Osipov
, and
F.
Giesselmann
,
Phys. Rev. E
81
,
021707
(
2010
).
54.
R. C.
Zamar
and
O.
Mensio
,
J. Chem. Phys.
121
,
11927
(
2004
).
55.
T.
Charpentier
,
D.
Sakellariou
,
J.
Virlet
,
F. S.
Dzheparov
, and
J. F.
Jacquinot
,
J. Chem. Phys.
127
,
224506
(
2007
).
56.
A.
Abragam
and
M.
Goldman
,
Nuclear Magnetism: Order and Disorder
(
Clarendon
,
Oxford
,
1982
).
57.
K.
Kumar
,
J. Math. Phys.
6
(
12
),
1928
(
1965
).
58.
R. C.
Tolman
,
The Principles of Statistical Mechanics
(
Oxford University Press
,
Oxford
,
1938
).
59.
J. P.
Paz
and
W.
Zurek
,
Lecture Notes in Physics
(
Springer
,
Heidelberg/Berlin
,
2002
), Vol.
587
, pp.
77
148
.
60.
K.
Blum
,
Density Matrix Theory and Applications
, 2nd ed. (
Plenum
,
New York
,
1996
).
61.
See supplementary material at http://dx.doi.org/10.1063/1.3668559, for details on: Reduced density matrix of the observed system. General function of decoherence induced by the coupling with the environment; Relation between the Hamiltonians and the representation basis; Analysis of the eigenvalues of
$i{{\bf C}}^{(f)}_{i,L}$
iCi,L(f)
; Expansion of the time evolution operator in exponential operators with a single nested commutator as exponent; and Expansion for a sum of operators in the exponent.
62.
We neglected chemical shift effects, since the phenomenology motivating our analysis is mainly associated with the molecular dipolar network. However, the chemical shifts should be included in a detailed description of the quasi-invariants.
63.
H.
Cho
,
P.
Cappellaro
,
D. G.
Cory
, and
C.
Ramanathan
,
Phys. Rev. B
74
,
224434
(
2006
).
64.
D. N.
Shykind
,
J.
Baum
,
S. B.
Liu
,
A.
Pines
, and
A. N.
Garroway
,
J. Magn. Reson.
76
,
149
(
1988
).
65.
S. K.
Gosh
,
Solid State Commun.
11
,
1763
(
1972
).
66.
J. B.
Ferreira
,
A. F.
Martins
,
D.
Galland
, and
F.
Volino
,
Mol. Cryst. Liq. Cryst.
151
,
283
(
1987
).
67.
D.
Galland
and
F.
Volino
,
J. Phys. (France)
50
,
1743
(
1989
).
68.
P.
Esnault
,
J. P.
Casquilho
, and
F.
Volino
,
Liq. Cryst.
3
,
1425
(
1988
).
69.
C. P.
Slichter
,
Principles of Magnetic Resonance
(
Springer-Verlag
,
Berlin
,
1990
).
70.
M. J.
Stephen
and
J. P.
Straley
,
Rev. Mod. Phys.
46
(
4
),
622
(
1974
).
71.
M.
Goldman
,
Spin Temperature and Nuclear Magnetic Resonance in Solids
(
Clarendon
,
Oxford
,
1970
).
72.
J.
Jeener
,
Adv. Magn. Reson.
3
,
205
(
1968
).
73.
M. H.
Levitt
,
D.
Suter
, and
R. R.
Ernst
,
J. Chem. Phys.
84
,
4243
(
1986
).
74.
W. R.
Krigbaum
,
Y.
Chatani
, and
P. G.
Barber
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
B26
,
97
(
1970
).
75.
W. S.
Warren
,
D. P.
Weitekamp
, and
A.
Pines
,
J. Chem. Phys.
73
(
5
),
2084
(
1980
).
76.
D. T.
Gillespie
,
Am. J. Phys.
51
(
6
),
520
(
1983
).
77.
D.
Solenov
,
D.
Tolkunov
, and
V.
Privman
,
Phys. Rev. B
75
,
035134
(
2007
).
78.
L.
Fedichkin
,
A.
Fedorov
, and
V.
Privman
,
Proc. SPIE
6244
,
624408
(
2006
).
79.
A.
Fedorov
and
L.
Fedichkin
,
J. Phys.: Condens. Matter
18
,
3217
(
2006
).
80.
V. E.
Zobov
and
A. A.
Lundin
,
JETP
112
(
3
),
451
(
2011
).

Supplementary Material

You do not currently have access to this content.