Spin-lattice relaxation rates (R1H and R1F) of two nuclear species (1H and 19F) are measured at different temperatures in the isotropic phase of a liquid crystal (4-butoxy-3-fluoro-4-isothiocyanatotolane–4OFTOL), over a wide range of Larmor frequency (10 kHz–50 MHz). Their dispersion profiles are found to be qualitatively very different, and the R1F in particular shows significant dispersion (varying over two orders of magnitude) in the entire isotropic range, unlike R1H. The proton spin-lattice relaxation, as has been established, is mediated by time modulation of magnetic dipolar interactions with other protons (case of like spins), and the discernable dispersion in the mid-frequency range, observed as the isotropic to nematic transition is approached on cooling, is indicative of the critical slowing of the time fluctuations of the nematic order. Significant dispersion seen in the R1F extending to very low frequencies suggests a distinctly different relaxation path which is exclusively sensitive to the ultra slow modes apparently present in the system. We find that under the conditions of our experiment at low Zeeman fields, spin-rotation coupling of the fluorine with the molecular angular momentum is the dominant mechanism, and the observed dispersion is thus attributed to the presence of slow torques experienced by the molecules, arising clearly from collective modes. Following the arguments advanced to explain similar slow processes inferred from earlier detailed ESR measurements in liquid crystals, we propose that slowly relaxing local structures representing such dynamic processes could be the likely underlying mechanism providing the necessary slow molecular angular momentum correlations to manifest as the observed low frequency dispersion. We also find that the effects of the onset of cross-relaxation between the two nuclear species when their resonance lines start overlapping at very low Larmor frequencies (below ∼ 400 kHz), provide an additional relaxation contribution.

1.
C.
Catanescu
,
L. C.
Chien
, and
S. T.
Wu
,
Mol. Cryst. Liq. Cryst.
411
,
93
(
2007
).
2.
Y. M.
Liao
,
N.
Janarthan
,
C. S.
Hsu
,
S.
Gauza
, and
S. T.
Wu
,
Liq. Cryst.
33
,
1199
(
2006
).
3.
S.
Gauza
,
S. T.
Wu
,
A.
Spadlo
, and
R.
Dabrowski
,
J. Disp. Technol.
2
,
247
(
2006
).
4.
S.
Gauza
,
C.
Wen
,
Y.
Zhao
,
S. T.
Wu
,
A.
Ziolek
, and
R.
Dabrowski
,
Mol. Cryst. Liq. Cryst.
453
,
215
(
2006
).
5.
S.
Gauza
,
J.
Li
,
S. T.
Wu
,
A.
Spadlo
,
R.
Dabrowski
,
Y.
Tzeng
, and
K.
Cheng
,
Liq. Cryst.
32
,
1077
(
2005
).
6.
J.
Czub
,
S.
Urban
,
R.
Dabrowski
, and
B.
Gestblom
,
Acta Phys. Pol. A
107
,
947
(
2005
).
7.
J.
Li
,
S.
Gauza
, and
S. T.
Wu
,
Opt. Express
12
,
2002
(
2004
).
8.
D.
Demus
,
Y.
Goto
,
S.
Sawada
,
E.
Nakagawa
,
H.
Saito
, and
R.
Tarana
,
Mol. Cryst. Liq. Cryst.
260
,
1
(
1995
).
9.
I. K.
Huh
and
Y. B.
Kim
,
Liq. Cryst.
29
,
1265
(
2002
).
10.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Clarendon
,
Oxford
,
1961
).
11.
N.
Bloembergen
,
S.
Shapiro
,
P. S.
Pershan
, and
J. O.
Artman
,
Phys. Rev.
114
,
445
(
1959
).
12.
A.
Spadlo
,
R.
Dabrowski
,
M.
Filipowicz
,
Z.
Stolarz
,
J.
Przedmojski
,
S.
Gauza
,
C. Y.
Fan
, and
S. T.
Wu
,
Liq. Cryst.
30
,
191
(
2003
).
13.
A.
Spadlo
,
J.
Dziaduszek
,
R.
Dabrowski
,
K.
Czuprynski
, and
S. T.
Wu
,
Proc. of SPIE
4759
,
79
(
2002
).
14.
R. Y.
Dong
,
Nuclear Magnetic Resonance of Liquid Crystals
(
Springer-Verlag
,
Berlin
,
1994
).
15.
R. Y.
Dong
,
Nuclear Magnetic Resonance Spectroscopy of Liquid Crystals
(
World Scientific
,
Singapore
,
2009
).
16.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
,
Phys. Rev
73
,
679
(
1948
).
17.
F. V.
Chavez
,
F.
Bonetto
, and
D. J.
Pusiol
,
Chem. Phys. Lett.
330
,
368
(
2000
).
18.
P. S.
Hubbard
,
Phys. Rev.
131
,
1155
(
1963
).
19.
D. K.
Green
and
J. G.
Powles
,
Proc. Phys. Soc.
85
,
87
(
1965
).
20.
H. S.
Gutowsky
,
I. J.
Lawrenson
, and
K.
Shimomura
,
Phys. Rev. Lett.
6
,
349
(
1961
).
21.
R. J. C.
Brown
,
H. S.
Gutowsky
, and
K.
Shimomura
,
J. Chem. Phys.
38
,
76
(
1963
).
22.
J. H.
Freed
,
J. Chem. Phys.
66
,
4183
(
1977
).
23.
J. H.
Freed
,
A.
Nayeem
, and
S. B.
Rananavare
,
The Molecular Dynamics of Liquid crystals
, edited by
G. R.
Luckhurst
, and
C. A.
Veracini
(
Kluwer Academic, Dordrecht
,
1994
), Chap. 4; Chap. 5 and references therein.
24.
V. S. S.
Sastry
,
A.
Polimeno
,
R. H.
Crepeau
, and
J. H.
Freed
,
J. Chem. Phys.
105
,
5753
(
1996
).
25.
V. S. S.
Sastry
,
A.
Polimeno
,
R. H.
Crepeau
, and
J. H.
Freed
,
J. Chem. Phys.
105
,
5773
(
1996
).
26.
W. H.
Press
,
B. P.
Flennery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes, the Art of Scientific Computation
(
Cambridge University press
,
Cambridge
,
1986
).
27.
M.
Trivikram Rao
,
M.
Rajeswari
,
K.
Venu
,
V. S. S.
Sastry
, and
R.
Dabrowski
, “
Detection of slow motions in the isotropic phase of liquid crystals
,” Phys. Rev. E (unpublished).
28.
M.
Rajeswari
,
S.
Dhara
,
K.
Venu
,
V. S. S.
Sastry
, and
R.
Dabrowski
,
Mol. Cryst. Liq. Cryst.
546
,
45
(
2011
).
You do not currently have access to this content.