Short- and long-range liquid structures of [CnmIm+][TFSA] with n = 2, 4, 6, 8, 10, and 12 have been studied by high-energy x-ray diffraction (HEXRD) and small-angle neutron scattering (SANS) experiments with the aid of MD simulations. Observed x-ray structure factor, S(Q), for the ionic liquids with the alkyl-chain length n > 6 exhibited a characteristic peak in the low-Q range of 0.2–0.4 Å −1, indicating the heterogeneity of their ionic liquids. SANS profiles IH(Q) and ID(Q) for the normal and the alkyl group deuterated ionic liquids, respectively, showed significant peaks for n = 10 and 12 without no form factor component for large spherical or spheroidal aggregates like micelles in solution. The peaks for n = 10 and 12 evidently disappeared in the difference SANS profiles ΔI(Q) [=ID(Q) − IH(Q)], although that for n = 12 slightly remained. This suggests that the long-range correlations originated from the alkyl groups hardly contribute to the low-Q peak intensity in SANS. To reveal molecular origin of the low-Q peak, we introduce here a new function; x-ray structure factor intensity at a given Q as a function of r, SQpeak(r). The SQpeak(r) function suggests that the observed low-Q peak intensity depending on n is originated from liquid structures at two r-region of 5–8 and 8–15 Å for all ionic liquids examined except for n = 12. Atomistic MD simulations are consistent with the HEXRD and SANS experiments, and then we discussed the relationship between both variations of low-Q peak and real-space structure with lengthening the alkyl group of the CnmIm.

1.
Ionic Liquids in Syntheses
, 2nd ed. edited by
P.
Wassescheid
and
T.
Welton
(
Wiley VCH
,
Weinheim
,
2007
).
2.
Ionic Liquids IV, ACS Symposium Series Vol. 975
edited by
J. F.
Brennecke
,
R. D.
Rogers
, and
K. R.
Seddon
(
Oxford University Press
,
New York
,
2007
).
3.
Electrochemical Aspects of Ionic Liquids
, edited by
H.
Ohno
(
Wiley-Interscience
,
Hoboken, New Jersey
,
2005
).
4.
A. A. H.
Pádua
,
M. F. C.
Gomes
, and
J. N. A. C.
Lopes
,
Acc. Chem. Res.
40
,
1087
(
2007
).
5.
W.
Zhao
,
F.
Leroy
,
B.
Heggen
,
S.
Zahn
,
B.
Kirchner
,
S.
Balasubramanian
, and
F.
Müller-Plathe
,
J. Am. Chem. Soc.
131
,
15825
(
2009
).
6.
T.
Gutel
,
C. C.
Santini
,
A. A. H.
Pádua
,
B.
Fenet
,
Y.
Chauvin
,
J. N. C.
Lopes
,
F.
Bayard
,
M. F. C.
Gomes
, and
A. S.
Pensado
,
J. Phys. Chem. B
113
,
170
(
2009
).
7.
M.
Blesic
,
J. N. C.
Lopes
,
A. A. H.
Pádua
,
K.
Shimizu
,
M. F. C.
Gomes
, and
L. P. N.
Rebelo
,
J. Phys. Chem. B
113
,
7631
(
2009
).
8.
K.
Shimizu
,
M. F. C.
Gomes
,
A. A. H.
Pádua
,
L. P. N.
Rebelo
, and
J. N. A. C.
Lopes
,
J. Phys. Chem. B
113
,
9894
(
2009
).
9.
C.
Hardacre
,
S. E. J.
Holbrey
,
S. E. J.
McMath
,
D. T.
Boeron
, and
A. K.
Soper
,
J. Chem. Phys.
18
,
273
(
2003
).
10.
C.
Hardacre
,
S. E. J.
McMath
,
M.
Nieuwenhuyzen
,
D. T.
Boeron
, and
A. K.
Soper
,
J. Phys.: Condens. Matter
15
,
S159
(
2003
).
11.
M.
Deetlefs
,
C.
Hardacre
,
M.
Nieuwenhuyzen
,
O.
Sheppard
, and
A. K.
Soper
,
J. Phys. Chem. B
109
,
1593
(
2005
).
12.
M.
Deetlefs
,
C.
Hardacre
,
M.
Nieuwenhuyzen
,
A. A. H.
Pádua
,
O.
Sheppard
, and
A. K.
Soper
,
J. Phys. Chem. B
110
,
12055
(
2006
).
13.
A.
Triolo
,
O.
Russina
,
U.
Keiderling
, and
J.
Kohlbrecher
,
J. Phys. Chem. B
110
,
1513
(
2006
).
14.
C.
Hardacre
,
J. D.
Holbrey
,
M.
Nieuwenhuyzen
, and
T. G. A.
Youngs
,
Acc. Chem. Res.
40
,
1146
(
2007
).
15.
C.
Hardacre
,
J. D.
Holbrey
,
C. L.
Mullan
,
M.
Nieuwenhuyzen
,
T. G. A.
Youngs
, and
D. T.
Bowron
,
J. Phys. Chem. B
112
,
8049
(
2008
).
16.
D. T.
Bowron
,
C. D.
Agostino
,
L. F.
Gladden
,
C.
Hardacre
,
J. D.
Holbrey
,
M. C.
Lagunas
,
J.
McGregor
,
M. D.
Mantle
,
C. L.
Mullan
, and
T. G. A.
Youngs
,
J. Phys. Chem. B
1214
,
7760
(
2010
).
17.
H.
Morita
,
S.
Kohara
, and
T.
Usuki
,
J. Mol. Liq.
147
,
182
(
2009
).
18.
L.
Gontrani
,
O.
Russina
,
F.
Lo Celso
,
R.
Caminiti
,
G.
Annat
, and
A.
Triolo
,
J. Phys. Chem. B
113
,
9235
(
2009
).
19.
E.
Bodo
,
L.
Gontrani
,
R.
Caminiti
,
N. V.
Plechkova
,
K. R.
Seddon
, and
A.
Triolo
,
J. Phys. Chem. B
114
,
16398
(
2010
).
20.
C. S.
Santos
,
H. V. R.
Annapureddy
,
N. S.
Murthy
,
H. K.
Kashyap
,
E. W.
Castner
 Jr.
, and
C. J.
Margulis
,
J. Chem. Phys.
134
,
064501
(
2011
).
21.
B.
Aoun
,
A.
Goldbach
,
S.
Kohara
,
J.-F.
Wax
,
M. A.
González
, and
M.-L.
Saboungi
,
J. Phys. Chem. B
114
,
12623
(
2010
).
22.
B.
Aoun
,
A.
Goldbach
,
M. A.
González
,
S.
Kohara
,
D. L.
Price
, and
M.-L.
Saboungi
,
J. Chem. Phys.
134
,
104509
(
2011
).
23.
K.
Fujii
,
Y.
Soejima
,
Y.
Kyoshoin
,
S.
Fukuda
,
R.
Kanzaki
,
Y.
Umebayashi
,
T.
Yamaguchi
,
S.
Ishiguro
, and
T.
Takamuku
,
J. Phys. Chem. B
112
,
4329
(
2008
).
24.
R.
Kanzaki
,
T.
Mitsugi
,
S.
Fukuda
,
K.
Fujii
,
M.
Takeuchi
,
Y.
Soejima
,
T.
Takamuku
,
T.
Yamaguchi
,
Y.
Umebayashi
, and
S.
Ishiguro
,
J. Mol. Liq.
147
,
77
(
2009
).
25.
K.
Fujii
,
T.
Mitsugi
,
T.
Takamuku
,
T.
Yamaguchi
,
Y.
Umebayashi
, and
S.
Ishiguro
,
Chem. Lett.
38
,
340
(
2009
).
26.
Y.
Umebayashi
,
H.
Hamano
,
S.
Tsuzuki
,
J. N. A. C.
Lopes
,
A. A. H.
Pádua
,
Y.
Kameda
,
S.
Kohara
,
T.
Yamaguchi
,
K.
Fujii
, and
S.
Ishiguro
,
J. Phys. Chem. B
114
,
11715
(
2010
).
27.
M.
Kanakubo
,
T.
Ikeda
,
T.
Aizawa
,
H.
Nanjo
,
Y.
Kameda
,
Y.
Amo
, and
T.
Usuki
,
Anal. Sci.
24
,
1373
(
2008
).
28.
S.
Fukuda
,
M.
Takeuchi
,
K.
Fujii
,
R.
Kanzaki
,
T.
Takamuku
,
K.
Chiba
,
H.
Yamamoto
,
Y.
Umebayashi
, and
S.
Ishiguro
,
J. Mol. Liq.
143
,
2
(
2008
).
29.
K.
Fujii
,
S.
Seki
,
S.
Fukuda
,
T.
Takamuku
,
S.
Kohara
,
Y.
Kameda
,
Y.
Umebayashi
, and
S.
Ishiguro
,
J. Mol. Liq.
143
,
64
(
2008
).
30.
Y.
Umebayashi
,
W.-L.
Chung
,
T.
Mitsugi
,
S.
Fukuda
,
M.
Takeuchi
,
K.
Fujii
,
T.
Takamuku
,
R.
Kanzaki
, and
S.
Ishiguro
,
J. Comput. Chem. Jpn.
7
,
125
(
2008
).
31.
S. M.
Urahara
and
M. C. C.
Ribeiro
,
J. Chem. Phys.
120
,
1855
(
2004
).
32.
Y.
Wang
and
G. A.
Voth
,
J. Am. Chem. Soc.
127
,
12192
(
2005
).
33.
Y.
Wang
and
G. A.
Voth
,
J. Phys. Chem. B
110
,
18601
(
2006
).
34.
Y.
Wang
,
W.
Jiang
,
T.
Yan
, and
G. A.
Voth
,
Acc. Chem. Res.
40
,
1193
(
2007
).
35.
J. N. A. C.
Lopes
and
A. A. H.
Pádua
,
J. Phys. Chem. B
110
,
3330
(
2006
).
36.
J. N. A. C.
Lopes
,
M. F. C.
Gomes
, and
A. A. H.
Pádua
,
J. Phys. Chem. B
110
,
16816
(
2006
).
37.
L. M. N. B. F.
Santos
,
J. N. A. C.
Lopes
,
J. A. P.
Coutinho
,
J. M. S. S.
Esperança
,
L. R.
Gomes
,
I. M.
Marrucho
, and
L. P. N.
Rebelo
,
J. Am. Chem. Soc.
129
,
284
(
2007
).
38.
K.
Simizu
,
M.
Tariq
,
M. F. C.
Gomes
,
L. P. N.
Rebelo
, and
J. N. A. C.
Lopes
,
J. Phys. Chem. B
114
,
5831
(
2010
).
39.
T.
Köddermann
,
D.
Paschek
, and
R.
Ludwig
,
ChemPhysChem
9
,
549
(
2008
).
40.
A.
Triolo
,
O.
Russina
,
H.-J.
Bluif
, and
E. D.
Cola
,
J. Phys. Chem. B
111
,
4641
(
2007
).
41.
A.
Triolo
,
O.
Russina
,
B.
Fazio
,
R.
Triolo
, and
E. D.
Cola
,
Chem. Phys. Lett.
457
,
362
(
2008
).
42.
O.
Russina
,
A.
Triolo
,
L.
Gontrani
,
R.
Caminiti
,
D.
Xiao
,
L. G.
Hines
 Jr.
,
R. A.
Bartsch
,
E. L.
Quitevis
,
N. V.
Plechkova
, and
K. R.
Seddon
,
J. Phys.: Condens. Matter
21
,
424121
(
2009
).
43.
D.
Xiao
,
L. G.
Hines
,
S.
Li
,
R. A.
Bartsch
,
E. L.
Quitevis
,
O.
Russina
, and
A.
Triolo
,
J. Phys. Chem. B
113
,
6426
(
2009
).
44.
A.
Triolo
,
O.
Russina
,
B.
Fazio
,
G. B.
Appetecchi
,
M.
Carewska
, and
S.
Passerini
,
J. Chem. Phys.
130
,
164521
(
2009
).
45.
R.
Atkin
and
G. G.
Warr
,
J. Phys. Chem. B
112
,
4164
(
2008
).
46.
R.
Hayes
,
S.
Imberti
,
G. G.
Warr
, and
R.
Atkin
,
Phys. Chem. Chem. Phys.
13
,
3237
(
2011
).
47.
T. L.
Greaves
,
D. F.
Kennedy
,
S. T.
Mudie
, and
C. J.
Drummond
,
J. Phys. Chem. B
114
,
10022
(
2010
).
48.
B. L.
Bhargava
,
R.
Devane
,
M. L.
Klein
, and
S.
Balasubramanian
,
Soft Matter
3
,
1395
(
2007
).
49.
B. L.
Bhargava
,
S.
Balasubramanian
, and
M. L.
Klein
,
Chem. Commun.
29
,
3339
(
2008
).
50.
B. L.
Bhargava
,
M. L.
Klein
, and
S.
Balasubramanian
,
ChemPhysChem
9
,
67
(
2008
).
51.
C.
Hardacre
,
J. D.
Holbrey
,
C. L.
Mullan
,
T. G. A.
Youngs
, and
D. T.
Bowron
,
J. Chem. Phys.
133
,
074510
(
2010
).
52.
H. V. R.
Annapureddy
,
H. K.
Kashyap
,
P. M.
De Biase
, and
C. J.
Margulis
,
J. Phys. Chem. B
114
,
16838
(
2010
).
53.
M.
Isshiki
,
Y.
Ohishi
,
S.
Goto
,
K.
Takeshita
, and
T.
Oshikawa
,
Nucl. Instrum. Methods
467
,
663
(
2001
).
54.
S.
Kohara
,
K.
Suzuya
,
Y.
Kashihara
,
N.
Matsumoto
,
N.
Umesaki
, and
I.
Sakai
,
Nucl. Instrum. Methods
467
,
1030
(
2001
).
55.
S.
Sakai
, KEK Report 90-16, 1990 (
National Laboratory for High Energy Physics
, Japan,
1990
).
56.
D. T.
Cormer
and
J. B.
Mann
,
J. Chem. Phys.
47
,
1892
(
1967
).
57.
D. T.
Cromer
,
J. Chem. Phys.
50
,
4857
(
1969
).
58.
D. T.
Cromer
and
R. J.
Howerton
,
J. Phys. Chem. Ref. Data
4
,
471
(
1975
).
59.
E. N.
Maslen
,
A. G.
Fox
, and
M. A.
O’Keefe
,
International Tables for Crystallography Volume C
(
Kluwer
,
Dorfrecht
,
1999
), p.
572
.
60.
S.
Okabe
,
M.
Nagao
,
T.
Karino
,
S.
Watanabe
,
T.
Adachi
,
H.
Shimizu
, and
M.
Shibayama
,
J. Appl. Crystallogr.
38
,
1035
(
2005
).
61.
S.
Okabe
,
T.
Karino
,
M.
Nagao
,
S.
Watanabe
, and
M.
Shibayama
,
Nucl. Instrum. Methods Phys. Res. A
572
,
853
(
2007
).
62.
H.
Iwase
,
H.
Endo
,
M.
Katagiri
, and
M.
Shibayama
,
J. Appl. Crystallogr.
44
,
558
(
2011
).
63.
M.
Shibayama
,
T.
Matsunaga
, and
M.
Nagao
,
J. App. Crystallogr.
42
,
621
(
2009
).
64.
J. N. A. C.
Lopes
and
A. A. H.
Pádua
,
J. Phys. Chem. B
108
,
2038
(
2004
).
65.
J. N. A. C.
Lopes
and
A. A. H.
Pádua
,
J. Phys. Chem. B
110
,
19586
(
2006
).
66.
K. R.
Harris
,
M.
Kanakubo
, and
L. A.
Woolf
,
J. Chem. Eng. Data
52
,
1080
(
2007
).
67.
J.
Jacquemin
,
P.
Husson
,
V.
Majer
, and
M. F. C.
Gomes
,
J. Solution Chem.
36
,
967
(
2007
).
68.
D. H.
Zaitsau
,
G. J.
Kabo
,
A. A.
Strechan
,
Y. U.
Paulechka
,
A.
Tschersich
,
S. P.
Verevkin
, and
A.
Heintz
,
J. Phys. Chem. A
110
,
7303
(
2006
).
69.
H.
Tokuda
,
K.
Hayamizu
,
K.
Ishii
,
M. A. B. H.
Susan
, and
M.
Watanabe
,
J. Phys. Chem. B
110
,
2833
(
2006
).
70.
J.
Jacquemin
,
P.
Husson
,
V.
Mayer
, and
I.
Cibulka
,
J. Chem. Eng. Data
52
,
2204
(
2007
).
71.
The molecular geometry of gauche C12mIm+ was evaluated on the basis of crystal [C12mIm+][PF6−] reported in Gordon et al [
C. M.
Gordon
,
J. D.
Holbrey
,
A. R.
Kennedy
, and
K. R.
Seddon
,
J. Mater. Chem.
8
,
2627
(
1998
).], and that of trans one was obtained by modifying the gauche structure. For n = 4, 6, 8, and 10 system, their gauche and trans geometries were based on the C12mIm+ cations, i.e., the C12mIm+ geometry was modified by reducing the alkyl-chain number to obtain a given CnmIm+ structure.
72.
K.
Matsumoto
,
T.
Tsuda
,
R.
Hagiwara
,
Y.
Ito
, and
O.
Tamada
,
Solid State Sci.
4
,
23
(
2002
).
73.
A. R.
Choudhury
,
N.
Winterton
,
A.
Steiner
,
A. I.
Cooper
, and
K. A.
Johnson
,
Cryst. Eng. Comm.
8
,
742
(
2006
).
74.
J. D.
Holbrey
,
W. M.
Reichert
, and
R. D.
Rogers
,
Dalton Trans.
15
,
2267
(
2004
).
75.
According to our previous work in [C2mim+][TFSA] system, the Sintra(Q) and the corresponding Gintra(r) could be successfully evaluated with taking into account of the cation and anion conformers, i.e., two TFSA conformers (cis and trans TFSA-) and that of two C2mIm+ ones (nonplanar staggerd and planar C2mIm+). C4mim+ cation shows trans–gauche conformational isomerism with respect to the N1–C7–C8–C9 and the C7–C8–C9–C10 dihedral angles to give mainly TT and GT isomers, respectively. With regard to the Cnmim+ cation with n = 6 to 12, the TT and GT isomers are similarly present in the ionic liquids, according to MD simulations by Lopes et al [
J. N. A. C.
Lopes
and
A. A. H.
Pádua
,
J. Phys. Chem. B
110
,
7485
(
2006
).]
[PubMed]
This MD study also pointed out that the C-C-C-C dihedrals within the alkyl chains of the Cnmim+ are predominantly present as trans conformers, as is typical of normal alkanes. [
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
);
G.
Kaminski
and
W. L.
Jorgensen
,
J. Phys. Chem. B
100
,
18010
(
1996
).] Thus, in this work, we assumed the 1:1 mixture model to the [Cnmim+][TFSA−] system, i.e., the respective two conformers for the Cnmim+ and TFSA ions equally exist as gauche : trans = 1:1 for the cation and cis : trans = 1:1 for the anion.
76.
J.
Bowers
,
C. P.
Butts
,
P. J.
Martin
, and
M. C.
Vergara-Gutierrez
,
Langmuir
20
,
2191
(
2004
).
77.
M. A. A.
Rocha
,
C. F. R. A. C.
Lima
,
L. R.
Gomes
,
B.
Schröder
,
J. A. P.
Coutinho
,
I. M.
Marrucho
,
J. M. S. S.
Esperança
,
L. P. N.
Rebelo
,
K.
Shimizu
,
J. N. C.
Lopes
, and
L. M. N. B. F.
Santos
,
J. Phys. Chem. B
115
,
10919
(
2011
).
78.
N. P.
Franks
,
M. H.
Abraham
, and
W. R.
Lieb
,
J. Pharm. Sci.
82
,
466
(
1993
).
79.
Y.
Marcus
,
J. Solution Chem.
19
,
507
(
1990
).
80.
J. L.
MacCallum
and
D. P.
Tieleman
,
J. Am. Chem. Soc.
124
,
15085
(
2002
).
81.
B.
Chen
and
J. I.
Siepmann
,
J. Phys. Chem. B
110
,
3555
(
2006
).
82.
M.
Tomšič
,
A.
Jamnik
,
G.
Fritz-Popovski
,
O.
Glatter
, and
L.
Vlček
,
J. Phys. Chem. B
111
,
1738
(
2007
).
83.
M.
Tomšič
,
G.
Fritz-Popovski
,
L.
Vlček
, and
A.
Jamnik
,
Acta Chim. Slov.
54
,
484
(
2007
).
84.
See supplementary material at http://dx.doi.org/10.1063/1.3672097 for x-ray weighted structure factors and radial distribution functions by HEXRD and MD (Figs. S1 and S2, respectively), low-Q peak intensity in the SMD(Q) obtained from FT of gMD(r) with varying rmax (Fig. S3) and deconvolution of x-ray, and neutron weighted SMD(Q) (Figs. S4 and S5).

Supplementary Material

You do not currently have access to this content.