We reveal a universal relationship between molecular polarizability (a single-molecule property) and partial molar volume in water that is an ensemble property characterizing solute-solvent systems. Since both of these quantities are of the key importance to describe solvation behavior of dissolved molecular species in aqueous solutions, the obtained relationship should have a high impact in chemistry, pharmaceutical, and life sciences as well as in environments. We demonstrated that the obtained relationship between the partial molar volume in water and the molecular polarizability has in general a non-homogeneous character. We performed a detailed analysis of this relationship on a set of ∼200 organic molecules from various chemical classes and revealed its fine well-organized structure. We found that this structure strongly depends on the chemical nature of the solutes and can be rationalized in terms of specific solute-solvent interactions. Efficiency and universality of the proposed approach was demonstrated on an external test set containing several dozens of polyfunctional and druglike molecules.

1.
S. M.
Free
and
J. W.
Wilson
,
J. Med. Chem.
7
,
395
(
1964
).
2.
T.
Imai
,
S.
Ohyama
,
A.
Kovalenko
, and
F.
Hirata
,
Protein Sci.
16
,
1927
(
2007
).
3.
T.
Brinck
,
J. S.
Murray
, and
P.
Politzer
,
J. Chem. Phys.
98
,
4305
(
1993
).
4.
P.
Politzer
,
J. S.
Murray
, and
F. A.
Bulat
,
J. Mol. Model.
16
,
1731
(
2010
).
5.
P.
Jin
,
J. S.
Murray
, and
P.
Politzer
,
Int. J. Quantum Chem.
96
,
394
(
2004
).
6.
L.
Lepori
and
P.
Gianni
,
J. Solution Chem.
29
,
405
(
2000
).
7.
E. L.
Ratkova
,
G. N.
Chuev
,
V. P.
Sergiievskyi
, and
M. V.
Fedorov
,
J. Phys. Chem. B
114
,
12068
(
2010
).
8.
D. S.
Palmer
,
A. I.
Frolov
,
E. L.
Ratkova
, and
M. V.
Fedorov
,
Mol. Pharmaceutics
8
,
1423
(
2011
).
9.
See supplementary material at http://dx.doi.org/10.1063/1.3672094 for description of training and test sets; experimental, benchmark, and predicted data for PMV and electric polarizability, their comparison; details of 3D RISM calculations.
10.
T.
Imai
,
H.
Nomura
,
M.
Kinoshita
, and
F.
Hirata
,
J. Phys. Chem. B
106
,
7308
(
2002
).
11.
L.
Leu
and
D.
Blankschtein
,
J. Phys. Chem.
96
(
21
),
8582
(
1992
).
12.
T.
Imai
and
F.
Hirata
,
J. Chem. Phys.
119
,
5623
(
2003
).
13.
T.
Imai
and
F.
Hirata
.
J. Chem. Phys.
122
,
094509
(
2005
).
14.
T.
Imai
,
M.
Kinoshita
, and
F.
Hirata
,
J. Chem. Phys.
112
,
9469
(
2000
).
15.
M.
Kinoshita
,
T.
Imai
,
A.
Kovalenko
, and
F.
Hirata
,
Chem. Phys. Lett.
348
,
337
(
2001
).
16.
A.
Kovalenko
and
F.
Hirata
,
J. Phys. Chem. B
103
,
7942
(
1999
).
17.
S.
Cabani
,
P.
Gianni
,
V.
Mollica
, and
L.
Lepori
,
J. Solution Chem.
10
,
563
(
1981
).
18.
H.
Durchschlag
,
T.
Hefferle
, and
P.
Zipper
,
Radiat. Phys. Chem.
67
,
479
(
2003
).
19.
A. V.
Plyasunov
and
E. L.
Shock
,
Geochim. Cosmochim. Acta
64
,
439
(
2000
).
20.
J. T.
Edward
,
P. G.
Farrell
, and
F.
Shahidi
,
J. Chem. Soc., Faraday Trans. 1
73
,
705
(
1977
).
21.
S.
Sawamura
,
K.
Nagaoka
, and
T.
Machikawa
,
J. Phys. Chem. B
105
,
2429
(
2001
).
22.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al, GAUSSIAN 03,
Gaussian, Inc.
,
2004
.
23.
See http://cccbdb.nist.gov. for NIST, Computational Chemistry Comparison and Benchmark Database (accessed April,
2010
).
24.
K.
Miller
,
J. Am. Chem. Soc.
112
,
8533
(
1990
).
26.
A.
Jakalian
,
B. L.
Bush
,
D. B.
Jack
, and
C. I.
Bayly
,
J. Comput. Chem.
21
,
132
(
2000
).
27.
A.
Jakalian
,
D. B.
Jack
, and
C. I.
Bayly
.
J. Comput. Chem.
23
,
1623
(
2002
).

Supplementary Material

You do not currently have access to this content.