The formulation and implementation of the spin-free (SF) exact two-component (X2c) theory at the one-electron level (SFX2c-1e) is extended in the present work to the analytic evaluation of second derivatives of the energy. In the X2c-1e scheme, the four-component one-electron Dirac Hamiltonian is block diagonalized in its matrix representation and the resulting “electrons-only” two-component Hamiltonian is then used together with untransformed two-electron interactions. The derivatives of the two-component Hamiltonian can thus be obtained by means of simple manipulations of the parent four-component Hamiltonian integrals and derivative integrals. The SF version of X2c-1e can furthermore exploit available nonrelativistic quantum-chemical codes in a straightforward manner. As a first application of analytic SFX2c-1e second derivatives, we report a systematic study of the equilibrium geometry and vibrational frequencies for the bent ground state of the copper hydroxide (CuOH) molecule. Scalar-relativistic, electron-correlation, and basis-set effects on these properties are carefully assessed.

1.
K. G.
Dyall
,
J. Chem. Phys.
106
,
9618
(
1997
).
2.
K. G.
Dyall
,
J. Chem. Phys.
109
,
4201
(
1998
).
3.
K. G.
Dyall
and
T.
Enevoldsen
,
J. Chem. Phys.
111
,
10000
(
1999
).
4.
K. G.
Dyall
,
J. Chem. Phys.
115
,
9136
(
2001
).
5.
6.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
123
,
241102
(
2005
).
7.
W.
Kutzelnigg
and
W.
Liu
,
Mol. Phys.
104
,
2225
(
2006
).
8.
W.
Liu
and
W.
Kutzelnigg
,
J. Chem. Phys.
126
,
114107
(
2007
).
9.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
131
,
031104
(
2009
).
10.
M.
Iliaš
and
T.
Saue
,
J. Chem. Phys.
126
,
064102
(
2007
).
11.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
125
,
044102
(
2006
).
12.
J.
Sikkema
,
L.
Visscher
,
T.
Saue
, and
M.
Iliaš
,
J. Chem. Phys.
131
,
124116
(
2009
).
13.
D.
Cremer
,
E.
Kraka
, and
M.
Filatov
,
Chem. Phys. Chem.
9
,
2510
(
2008
).
14.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
127
,
104106
(
2007
).
16.
W.
Kutzelnigg
,
Chem. Phys.
(in press).
17.
R. E.
Stanton
and
S.
Havriliak
,
J. Chem. Phys.
81
,
1910
(
1984
).
18.
L. L.
Foldy
and
S. A.
Wouthuysen
,
Phys. Rev.
78
,
29
(
1950
).
19.
P.
Knappe
and
N.
Rösch
,
J. Chem. Phys.
92
,
1153
(
1990
).
20.
R.
Samzow
,
B. A.
Hess
, and
G.
Jansen
,
J. Chem. Phys
96
,
1227
(
1992
).
21.
C.
Park
and
J. E.
Almlöf
,
Chem. Phys. Lett.
231
,
269
(
1994
).
22.
C.
van Wüllen
and
C.
Michauk
,
J. Chem. Phys.
123
,
204113
(
2005
).
23.
L.
Cheng
and
J.
Gauss
,
J. Chem. Phys.
134
,
244112
(
2011
).
24.
K. G.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
25.
L.
Cheng
and
J.
Gauss
,
J. Chem. Phys.
135
,
084114
(
2011
).
26.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
27.
D.
Peng
and
K.
Hirao
,
J. Chem. Phys.
130
,
044102
(
2009
).
28.
M.
Barysz
,
A. J.
Sadlej
, and
J. G.
Snijders
,
Int. J. Quant. Chem.
65
,
225
(
1997
).
29.
M.
Barysz
and
A. J.
Sadlej
,
J. Chem. Phys.
116
,
2696
(
2002
).
30.
M.
Iliaš
,
H. J. Aa.
Jensen
,
V.
Kellö
,
B. O.
Roos
, and
M.
Urban
,
Chem. Phys. Lett.
408
,
210
(
2005
).
31.
V. A.
Nasluzov
and
N.
Rösch
,
Chem. Phys.
210
,
413
(
1996
).
32.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
33.
A. V.
Matveev
,
V. A.
Nasluzov
, and
N.
Rösch
,
Int. J. Quantum Chem.
107
,
3236
(
2007
).
34.
W.
Zou
,
M.
Filatov
, and
D.
Cremer
,
J. Chem. Phys.
134
,
244117
(
2011
).
35.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem., Symp.
13
,
225
(
1979
).
36.
G.
Forgarasi
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
35
,
191
(
1984
).
37.
D. J
Fox
,
Y.
Osamura
,
M. R.
Hoffmann
,
J. F.
Gaw
,
G.
Fitzgerald
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
,
Chem. Phys. Lett.
102
,
17
(
1983
).
38.
R. N.
Camp
,
H. F.
King
,
J. W.
McIver
, and
D.
Mullally
,
J. Chem. Phys.
79
,
1088
(
1983
).
39.
M. R.
Hoffmann
,
D. J
Fox
,
J. F.
Gaw
,
Y.
Osamura
,
Y.
Yamaguchi
,
R. S.
Grev
,
G.
Fitzgerald
,
H. F.
Schaefer
 III
,
P. J.
Knowles
, and
N. C.
Handy
,
J. Chem. Phys.
80
,
2660
(
1984
).
40.
N. C.
Handy
,
R. D.
Amos
,
J. F.
Gaw
,
J. E.
Rice
, and
E. S.
Simandiras
,
Chem. Phys. Lett.
120
,
151
(
1985
).
41.
R. J.
Harrison
,
G. B.
Fitzgerald
,
W. D.
Laidig
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
124
,
291
(
1986
).
42.
E. A.
Salter
and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1767
(
1989
).
43.
H.
Koch
,
H. J.A.
Jensen
,
P.
Jørgensen
,
T.
Helgaker
,
G.
Scuseria
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
92
,
4924
(
1990
).
44.
J.
Gauss
and
J. F.
Stanton
,
Chem. Phys. Lett.
276
,
70
(
1997
).
45.
J.
Gauss
and
J. F.
Stanton
,
Phys. Chem. Chem. Phys.
2
,
2047
(
2000
).
46.
J.
Gauss
,
J. Chem. Phys.
116
,
4773
(
2002
).
47.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
48.
W.
Schneider
and
W.
Thiel
,
Chem. Phys. Lett.
157
,
367
(
1989
).
49.
J. F.
Stanton
and
J.
Gauss
,
Int. Rev. Phys. Chem.
19
,
61
(
2000
).
50.
M.
Filatov
and
K. G.
Dyall
,
Theor. Chem. Acc.
117
,
333
(
2007
).
51.
H. J. Aa.
Jensen
,
Lecture at International Conference on Relativistic Effects in Heavy Element Chemistry and Physics
, Muelheim/Ruhr, April 6–10,
2005
.
52.
R. M.
Stevens
,
R. M.
Pitzer
, and
W. N.
Lipscomb
,
J. Chem. Phys.
38
,
550
(
1963
).
53.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C. van
Wüllen
.
54.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
4334
(
1991
).
55.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
56.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Comp. Phys.
26
,
218
(
1978
).
57.
C.
Berger
, Ph.D. dissertation,
Universität Mainz
,
2008
.
58.
S.
Stopkowicz
and
J.
Gauss
,
J. Chem. Phys.
129
,
164119
(
2008
).
59.
S.
Stopkowicz
and
J.
Gauss
,
J. Chem. Phys.
134
,
064114
(
2011
).
60.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
61.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
62.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
63.
K. A.
Peterson
,
R. A.
Kendall
, and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
99
,
1930
(
1993
).
64.
K. A.
Peterson
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
102
,
2032
(
1994
).
65.
K. A.
Peterson
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
66.
N. B.
Balabanov
, and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
67.
To avoid linear dependencies in the cc-pwCVXZ(unc) sets, the additional steep s and p functions were omitted for O and H, while the additional steep s, p, and d functions were omitted for Cu.
68.
B. O.
Roos
,
V.
Veryazov
, and
P.
Widmark
,
Theor. Chem. Acc.
111
,
345
(
2004
).
69.
P. A.
Thiel
and
T. F.
Madey
,
Surf. Sci. Rep.
7
,
211
(
1987
).
70.
M.
Trkula
and
D. O.
Harris
,
J. Chem. Phys.
79
,
1138
(
1983
).
71.
J. W.
Kauffman
,
R. H.
Hauge
, and
J. L.
Margrave
,
J. Phys. Chem.
89
,
3541
(
1985
).
72.
C. N.
Jarman
,
W. T. M. L.
Fernando
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
144
,
286
(
1990
).
73.
C. N.
Jarman
,
W. T. M. L.
Fernando
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
145
,
151
(
1991
).
74.
C. J.
Whitham
,
H.
Ozeki
, and
S.
Saito
,
J. Chem. Phys.
110
,
11109
(
1999
).
75.
C. J.
Whitham
,
H.
Ozeki
, and
S.
Saito
,
J. Chem. Phys.
112
,
641
(
2000
).
76.
C.
Tao
,
C.
Mukarakate
, and
S. A.
Reid
,
Chem. Phys. Lett.
449
,
282
(
2007
).
77.
F.
Illas
,
J.
Rubio
,
F.
Cetellas
, and
J.
Virgili
,
J. Phys. Chem.
88
,
5225
(
1984
).
78.
C. W.
Bauschlicher
,
Int. J. Quantum Chem., Quantum Chem. Symp.
20
,
563
(
1986
).
79.
Y.
Mochizuki
,
T.
Takada
, and
A.
Murakami
,
Chem. Phys. Lett.
185
,
535
(
1991
).
80.
S.
Ikeda
,
T.
Nakajima
, and
K.
Hirao
,
Mol. Phys.
101
,
105
(
2003
).
81.
S.
Wang
,
A.
Paul
,
N. J.
DeYonker
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
123
,
014313
(
2005
).
82.
83.
J. N. P.
van Stralen
,
L.
Visscher
, and
J. F.
Ogilvie
,
Phys. Chem. Chem. Phys.
6
,
3779
(
2004
).
84.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
6505
(
1996
).
85.
H-S.
Lee
,
Y-K
Han
,
M. C.
Kim
,
C.
Bae
, and
Y. S.
Lee
,
Chem. Phys. Lett.
293
,
97
(
1998
).
86.
I. M.
Mills
, in
Molecular Spectroscopy: Modern Research
, edited by
K. N.
Rao
and
C. W.
Matthews
(
Academic
,
New York
,
1972
), p.
115
.
87.
J. F.
Stanton
,
C. L.
Lopreore
, and
J.
Gauss
,
J. Chem. Phys.
108
,
7190
(
1998
).
You do not currently have access to this content.