In transient infrared (IR) experiments, a molecular system may be photoexcited in a nonstationary conformational state, whose time evolution is monitored via IR spectroscopy with high temporal and structural resolution. As a theoretical formulation of these experiments, this work derives explicit expressions for transient one- and two-dimensional IR spectra and discusses various levels of approximation and sampling strategies. Adopting a photoswitchable octapeptide in water as a representative example, nonequilibrium molecular dynamics simulations are performed and the photoinduced conformational dynamics and associated IR spectra are discussed in detail. Interestingly, it is found that the time scales of dynamics and spectra may differ from residue to residue by up to an order of magnitude. Considering merely the cumulative spectrum of all residues, the contributions of the individual residues largely compensate each other, which may explain the surprisingly small frequency shifts and short photoproduct rise times found in experiment. Even when a localized amide I mode is probed (e.g., via isotope labeling), the vibrational frequency shift is shown to depend in a complicated way on the conformation of the entire peptide as well as on the interaction with the solvent. In this context, various issues concerning the interpretation of transient IR spectra and conformational dynamics in terms of a few exponential time scales are discussed.

1.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC
,
London
,
2009
).
2.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2011
).
3.
H.
Chung
,
Z.
Ganim
,
K.
Jones
, and
A.
Tokmakoff
,
Proc. Natl. Acad. Sci. U.S.A.
36
,
14237
(
2007
).
4.
K.
Hauser
,
C.
Krejtschi
,
R.
Huang
,
L.
Wu
, and
T. A.
Keiderling
,
J. Am. Chem. Soc.
130
,
2984
(
2008
).
5.
J. R.
Kumita
,
O. S.
Smart
, and
G. A.
Woolley
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
3803
(
2000
).
6.
J. A.
Ihalainen
,
B.
Paoli
,
S.
Muff
,
E. H. G.
Backus
,
J.
Bredenbeck
,
G. A.
Woolley
,
A.
Caflisch
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
9588
(
2008
).
7.
C.
Renner
and
L.
Moroder
,
ChemBioChem
7
,
869
(
2006
).
8.
J.
Bredenbeck
,
J.
Helbing
,
A.
Sieg
,
T.
Schrader
,
W.
Zinth
,
C.
Renner
,
R.
Behrendt
,
L.
Moroder
,
J.
Wachtveitl
, and
P.
Hamm
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
6452
(
2003
).
9.
J.
Bredenbeck
,
J.
Helbing
,
R.
Behrendt
,
C.
Renner
,
L.
Moroder
,
J.
Wachtveitl
, and
P.
Hamm
,
J. Phys. Chem. B
107
,
8654
(
2003
).
10.
T. E.
Schrader
,
W. J.
Schreier
,
T.
Cordes
,
F. O.
Koller
,
G.
Babitzki
,
R.
Denschlag
,
C.
Renner
,
M.
Löweneck
,
S.
Dong
,
L.
Moroder
,
P.
Tavan
, and
W.
Zinth
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
15729
(
2007
).
11.
C.
Renner
,
J.
Cramer
,
R.
Behrendt
, and
L.
Moroder
,
Biopolymers
63
,
382
(
2002
).
12.
P. H.
Nguyen
,
H.
Staudt
,
J.
Wachtveitl
, and
G.
Stock
,
J. Phys. Chem. B
115
,
13084
(
2011
).
13.
P. H.
Nguyen
,
P.
Hamm
, and
G.
Stock
, in
Proteins: Energy, Heat and Signal Flow
, edited by
D.
Leitner
and
J.
Straub
, (
Taylor and Francis/CRC
,
London
,
2009
), pp.
151
169
.
14.
P. H.
Nguyen
,
R. D.
Gorbunov
, and
G.
Stock
,
Biophys. J.
91
,
1224
(
2006
).
15.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
Oxford
,
1995
).
16.
W.
Pollard
,
S.-Y.
Lee
, and
R. A.
Mathies
,
J. Chem. Phys.
92
,
4012
(
1990
).
17.
B.
Strodel
and
G.
Stock
,
J. Chem. Phys.
124
,
114105
(
2006
).
18.
R.
Kubo
,
Adv. Chem. Phys.
15
,
101
(
1969
).
19.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
20.
S.
Roy
,
M. S.
Pshenichnikov
, and
T. L. C.
Jansen
,
J. Phys. Chem. B
115
,
5431
(
2011
).
21.
This is because various trajectories may sample different regions of conformational space, which results in different frequencies distributions. While the distribution of each individual trajectory is typically Gaussian, the sum of the distributions may be not.
22.
T. la Cour
Jansen
,
A. G.
Dijkstra
,
T. M.
Watson
,
J. D.
Hirst
, and
J.
Knoester
,
J. Chem. Phys.
125
,
044312
(
2006
).
23.
W.
Zhuang
,
D.
Abramavicius
,
T.
Hayashi
, and
S.
Mukamel
,
J. Phys. Chem. B
110
,
3362
(
2006
).
24.
H. J.
Bakker
and
J. L.
Skinner
,
Chem. Rev.
110
,
1498
(
2010
).
25.
D. van der
Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
26.
W. F. van
Gunsteren
,
S. R.
Billeter
,
A. A.
Eising
,
P. H.
Hünenberger
,
P.
Krüger
,
A. E.
Mark
,
W. R. P.
Scott
, and
I. G.
Tironi
,
Biomolecular Simulation: The Gromos96 Manual and User Guide
(
Vdf Hochschulverlag AG an der ETH Zürich
,
Zürich
,
1996
).
27.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, in
Intermolecular Forces
, edited by
B.
Pullman
(
Reidel
,
Dordrecht
,
1981
), pp.
331
342
.
28.
P. H.
Nguyen
,
Y.
Mu
, and
G.
Stock
,
Proteins
60
,
485
(
2005
).
29.
J. R.
Schmidt
,
S. A.
Corcelli
, and
J. L.
Skinner
,
J. Chem. Phys.
121
,
8887
(
2004
).
30.
P.
Bour
and
T. A.
Keiderling
,
J. Phys. Chem. B
109
,
23687
(
2005
).
31.
T. la Cour
Jansen
and
J.
Knoester
,
J. Chem. Phys.
124
,
044502
(
2006
).
32.
L.
Wang
,
C. T.
Middleton
,
M. T.
Zanni
, and
J. L.
Skinner
,
J. Phys. Chem. B
115
,
3713
(
2011
).
33.
R. D.
Gorbunov
and
G.
Stock
,
Chem. Phys. Lett.
437
,
272
(
2007
).
34.
R. D.
Gorbunov
,
D. S.
Kosov
, and
G.
Stock
,
J. Chem. Phys.
122
,
224904
(
2005
).
35.
Note that Ref. 12 shows the equilibrium difference spectrum of all residues.
36.
A.
Tokmakoff
,
J. Phys. Chem. A
104
,
4247
(
2000
).
37.
The photoproduct band is the positive feature of the transient difference spectrum that rises with increasing time.
38.
M.
Maroncelli
and
G. R.
Fleming
,
J. Chem. Phys.
89
,
5044
(
1988
).
You do not currently have access to this content.