By employing the vacuum ultraviolet (VUV) laser velocity-map imaging (VMI) photoelectron scheme to discriminate energetic photoelectrons, we have measured the VUV-VMI-threshold photoelectrons (VUV-VMI-TPE) spectra of propargyl radical [C3H3(⁠|${\rm \tilde X}{}^{\rm 2}{\rm B}_{\rm 1}$|X̃2B1)] near its ionization threshold at photoelectron energy bandwidths of 3 and 7 cm−1 (full-width at half-maximum, FWHM). The simulation of the VUV-VMI-TPE spectra thus obtained, along with the Stark shift correction, has allowed the determination of a precise value 70 156 ± 4 cm−1 (8.6982 ± 0.0005 eV) for the ionization energy (IE) of C3H3. In the present VMI-TPE experiment, the Stark shift correction is determined by comparing the VUV-VMI-TPE and VUV laser pulsed field ionization-photoelectron (VUV-PFI-PE) spectra for the origin band of the photoelectron spectrum of the |${\rm \tilde X}^ + {\rm - \tilde X}$|X̃+X̃ transition of chlorobenzene. The fact that the FWHMs for this origin band observed using the VUV-VMI-TPE and VUV-PFI-PE methods are nearly the same indicates that the energy resolutions achieved in the VUV-VMI-TPE and VUV-PFI-PE measurements are comparable. The IE(C3H3) value obtained based on the VUV-VMI-TPE measurement is consistent with the value determined by the VUV laser PIE spectrum of supersonically cooled C3H3(⁠|${\rm \tilde X}{}^{\rm 2}{\rm B}_{\rm 1}$|X̃2B1) radicals, which is also reported in this article.

1.
D. W.
Minsek
, and
P.
Chen
,
J. Phys. Chem.
94
.
8399
(
1990
).
2.
P.
Chen
,
I.
Fischer
, and
R.
Pfab
,
J. Chem. Phys.
131
,
159904
(
2009
).
3.
J. C.
Robinson
,
N. E.
Sveum
, and
D. M.
Neumark
,
J. Chem. Phys.
119
,
5311
(
2003
).
4.
T.
Zhang
,
X. N.
Tang
,
K.-C.
Lau
,
C. Y.
Ng
,
C.
Nicolas
,
D. S.
Peterka
,
M.
Ahmed
,
M. L.
Morton
,
B.
Ruscic
,
R.
Yang
,
L. X.
Wei
,
C. Q.
Huang
,
B.
Yang
,
J.
Wang
,
L. S.
Sheng
,
Y. W.
Zhang
, and
F.
Qi
,
J. Chem. Phys.
124
,
074302
(
2006
).
5.
P.
Hemberger
,
M.
Lang
,
B.
Noller
,
I.
Fischer
,
C.
Alcaraz
,
B. K.
Cunha de Miranda
,
G. A.
Garcia
, and
H.
Soldi-Lose
,
J. Phys. Chem. A
115
,
2225
2230
(
2011
).
6.
P.
Chen
,
I.
Fischer
, and
R.
Pfab
,
J. Chem. Phys.
131
,
159904
(
2009
).
7.
O.
Dopfer
,
D.
Roth
, and
J. P.
Maier
,
J. Am. Chem. Soc.
124
,
494
(
2002
);
[PubMed]
O.
Dopfer
,
D.
Roth
, and
J. P.
Maier
,
Int. J. Mass Spectrom.
218
,
281
(
2002
).
8.
A. M.
Ricks
,
G. E.
Douberly
,
P. V. R.
Schleyer
, and
M. A.
Duncan
,
J. Chem. Phys.
132
,
051101
(
2010
).
9.
T.
Schüβler
,
W.
Roth
,
T.
Gerber
,
C.
Alcaraz
, and
I.
Fischer
,
Phys. Chem. Chem. Phys.
7
,
819
(
2005
).
10.
K.
Tanaka
,
Y.
Sumiyoshi
,
Y.
Ohshima
,
Y.
Endo
, and
K.
Kawaguchi
,
J. Chem. Phys.
107
,
2728
(
1997
).
11.
K.-C.
Lau
and
C. Y.
Ng
,
J. Chem. Phys.
122
,
224310
(
2005
).
12.
W.
Eisfeld
,
Phys. Chem. Chem. Phys.
7
,
3924
(
2005
).
13.
P.
Botschwina
and
R.
Oswald
,
Chem. Phys.
378
,
4
(
2010
).
14.
X.
Huang
,
P. R.
Taylor
, and
T. J.
Lee
,
J. Phys. Chem. A
115
,
5005
(
2011
).
15.
P.
Botschwina
,
R.
Oswald
, and
G.
Rauhut
,
Phys. Chem. Chem. Phys.
13
,
7921
(
2011
).
16.
T.
Gilbert
,
R.
Pfab
,
I.
Fischer
, and
P.
Chen
,
J. Chem. Phys.
112
,
2575
(
2000
).
17.
T.
Gilbert
,
I.
Fischer
, and
P.
Chen
,
J. Chem. Phys.
113
,
561
(
2000
).
18.
J. A.
Miller
and
C. F.
Melius
,
Combust. Flame
91
,
21
(
1992
).
19.
G. R.
Gladstone
,
M.
Allan
, and
Y. L.
Yung
,
Icarus
119
,
1
(
1996
).
20.
J. M.
Vrtilek
,
C. A.
Gottlieb
,
E. W.
Gottlieb
,
T. C.
Killian
,
P.
Thaddeus
,
Astrophys. J.
346
L53
(
1990
).
21.
M.
Gasser
,
A. M.
Schulenberg
,
P. M.
Dietiker
,
A.
Bach
,
F.
Merkt
, and
P.
Chen
,
J. Chem. Phys
131
,
014304
(
2009
).
22.
X.
Xing
,
B.
Reed
,
K.-C.
Lau
,
C. Y.
Ng
,
X.
Zhang
,
G. B.
Ellison
,
J. Chem. Phys.
126
,
171101
(
2007
).
23.
K. C.
Lau
and
C. Y.
Ng
,
Acc. Chem. Res.
39
,
823
(
2006
).
24.
K. C.
Lau
and
C. Y.
Ng
,
J. Chem. Phys.
124
,
044323
(
2006
).
25.
K.-C.
Lau
and
C. Y.
Ng
,
Chin. J. Chem. Phys.
19
,
29
(
2006
).
26.
E. W.
Schlag
,
ZEKE Spectroscopy
(
Cambridge University Press
,
Cambridge,
1998
).
28.
H. L.
Offerhaus
,
C.
Nicole
,
F.
Lepine
,
C.
Boras
,
F.
Rosca-Pruna
, and
J. J.
Vrakking
,
Rev. Sci.
Instrum.
72
,
3245
(
2001
).
29.
C.
Nicole
,
I.
Sluimer
,
F.
Rosca-Pruna
,
M.
Warntjes
,
M.
Vrakking
,
C.
Bordas
,
F.
Texier
, and
F.
Robicheaux
,
Phys. Rev. Lett.
85
,
4024
(
2000
).
30.
A.
Osterwalder
,
M. J.
Nee
,
J.
Zhou
, and
D. M.
Neumark
,
J. Chem. Phys.
121
,
6317
(
2004
).
31.
C. J.
Hammond
and
K. L.
Reed
,
Phys. Chem. Chem. Phys.
10
,
6762
(
2008
).
32.
J.
Zhou
,
B.
Jones
,
X.
Yang
,
W. M.
Jackson
, and
C. Y.
Ng
,
J. Chem. Phys.
128
,
014305
(
2008
).
33.
J.
Zhou
,
K.-C.
Lau
,
E.
Hassanein
,
H.
Xu
,
S.-X.
Tian
,
B.
Jones
, and
C. Y.
Ng
,
J. Chem. Phys.
124
,
034309
(
2006
).
34.
B.
Jones
,
J.
Zhou
,
L.
Yang
, and
C. Y.
Ng
,
Rev. Sci. Instrum.
79
,
123106
(
2008
).
35.
X.
Yang
,
J.
Zhou
,
B.
Jones
,
C. Y.
Ng
, and
W. M.
Jackson
,
J. Chem. Phys.
128
,
084303
(
2008
).
36.
Yang
Pan
,
Hong
Gao
,
Lei
Yang
,
Jingang
Zhou
,
C. Y.
Ng
, and
W. M.
Jackson
,
J. Chem. Phys.
135
,
071101
(
2011
).
37.
H. K.
Woo
,
K.-C.
Lau
,
J.-P.
Zhan
,
C. Y.
Ng
,
C.-L.
Li
,
W. K.
Li
, and
P. M.
Johnson
,
J. Chem. Phys.
119
,
7789
(
2003
).
38.
K. C.
Lau
,
H. K.
Woo
,
P.
Wang
,
X.
Xing
, and
C. Y.
Ng
,
J. Chem. Phys.
124
,
224311
(
2006
).
39.
Y.
Hou
,
H.-K.
Woo
,
P.
Wang
,
X.
Xing
,
C. Y.
Ng
, and
K.-C.
Lau
,
J. Chem. Phys.
129
,
114305
(
2008
).
40.
B.
Reed
,
C.-S.
Lam
,
Y.-C.
Chang
,
X.
Xing
, and
C. Y.
Ng
,
Astrophys. J.
693
,
940
(
2009
).
41.
C.-S.
Lam
,
H.
Wang
,
Y.
Xu
,
K.-C.
Lau
, and
C. Y.
Ng
,
J. Chem. Phys.
134
,
144304
(
2011
).
42.
S.
Nourbakhsh
,
K.
Norwood
,
G.-Z.
He
, and
C. Y.
Ng
,
J. Am. Chem. Soc.
113
,
6311
(
1991
).
43.
K.
Norwood
,
S
Nourbakhsh
,
G.-Z.
He
, and
C. Y.
Ng
.
Chem. Phys. Lett.
184
,
147
(
1991
).
45.
J.
Berkowitz
,
R.
Spohr
,
P. M.
Guyon
,
W. A.
Chupka
, and
J.
Berkowitz
,
Rev. Sci. Instrum.
42
,
1872
(
1971
).
46.
47.
T. G.
Wright
,
S. I.
Panov
, and
T. A.
Miller
,
J. Chem. Phys.
102
,
4793
(
1995
).
48.
H. K.
Woo
,
Jiping
Zhan
,
K.-C.
Lau
,
C. Y.
Ng
, and
Y.-S.
Cheung
,
J. Chem. Phys.
116
,
8803
(
2002
).
49.
H. K.
Woo
,
P.
Wang
,
K. C.
Lau
,
X.
Xing
, and
C. Y.
Ng
,
J. Chem. Phys.
120
,
1756
(
2004
).
50.
H. K.
Woo
,
P.
Wang
,
K.-C.
Lau
,
X.
Xing
, and
C. Y.
Ng
,
J. Phys. Chem. A
108
,
9637
(
2004
).
51.
H. K.
Woo
,
K.-C.
Lau
, and
C. Y.
Ng
,
Chin. J. Chem. Phys.
17
,
292
(
2004
).
52.
H. K.
Woo
,
P.
Wang
,
K.-C.
Lau
,
X.
Xing
, and
C. Y.
Ng
,
J. Chem. Phys.
120
,
9561
(
2004
).
53.
X.
Xing
,
B.
Reed
,
M.-K.
Bahng
,
S. J.
Baek
,
P.
Wang
, and
C. Y.
Ng
,
J. Chem. Phys.
128
,
104306
(
2008
).
54.
T.
Baer
and
P. M.
Guyon
, “
An historical introduction to threshold photoionization
,” in
High Resolution Laser Photoionization and Photoelectron Studies
, edited by
T.
Baer
,
C. Y.
Ng
, and
I.
Powis
(
Wiley
,
New York
,
1995
), pp.
1
16
.
55.
H.
Gao
,
L.
Yang
,
C.-S.
Lam
,
Y.
Xu
,
H.
Wang
and
C. Y.
Ng
, J. Chem. Phys. (to be published).
56.
C. Y.
Ng
, “
Advances in photoionization and photoelectron studies using third generation synchrotron radiation and UV/VUV lasers
,” in
Photoionization and Photodetachment
, edited by
C. Y.
Ng
(
World Scientific
,
Singapore
,
1999
), Adv. Ser. Phys. Chem., Vol. 10A, Chap. 9, p.
394
538
.
57.
J.-C.
Huang
,
Y.-S.
Cheung
,
M.
Evans
,
C.-X.
Liao
,
C. Y.
Ng
,
C.-W.
Hsu
,
P.
Heimann
,
H.
Lefebvre-Brion
, and
C.
Cossart-Magos
,
J. Chem. Phys.
106
,
864
(
1997
).
58.
S.
Willitsch
and
F.
Merkt
,
Chem. Phys. Lett.
353
,
167
(
2002
).
59.
S.
Willitsch
and
F.
Merkt
,
Int. J. Mass Spectrom.
245
,
14
(
2005
).
60.
R.
Signorell
and
F.
Merkt
,
Mol. Phys.
92
,
793
(
1997
).
You do not currently have access to this content.