Molecular dynamics simulations have been performed to study the potential of mean force (PMF) between passivated gold nanoparticles (NPs) in supercritical CO2 (scCO2). The nanoparticle model consists of a 140 atom gold nanocore and a surface self-assembled monolayer, in which two kinds of fluorinated alkanethiols were considered. The molecular origin of the thermodynamics interaction and the solvation effect has been comprehensively studied. The simulation results demonstrate that increasing the solvent density and ligand length can enhance the repulsive feature of the free energy between the passivated Au nanoparticles in scCO2, which is in good agreement with previous experimental results. The interaction forces between the two passivated NPs have been decomposed to reveal various contributions to the free energy. It was revealed that the interaction between capping ligands and the interaction between the capping ligands and scCO2 solvent molecules cooperatively determine the total PMF. A thermodynamic entropy-energy analysis for each PMF contribution was used to explain the density dependence of PMF in scCO2 fluid. Our simulation study is expected to provide a novel microscopic understanding of the effect of scCO2 solvent on the interaction between passivated Au nanoparticles, which is helpful to the dispersion and preparation of functional metal nanoparticles in supercritical fluids.

1.
S.
Kinge
,
M.
Crego-Calama
, and
D. N.
Reinhoudt
,
ChemPhysChem
9
,
20
(
2008
).
2.
R.
Shenhar
and
V. M.
Rotello
,
Acc. Chem. Res.
36
,
549
(
2003
).
3.
M. C.
Daniel
and
D.
Astruc
,
Chem. Rev.
104
,
293
(
2004
).
4.
G.
Schmid
and
B.
Corain
,
Eur. J. Inorg. Chem.
17
,
3081
(
2003
).
5.
J. C.
Love
,
L. A.
Estroff
,
J. K.
Kriebel
,
R. G.
Nuzzo
, and
G. M.
Whitesides
,
Chem. Rev.
105
,
1103
(
2005
).
6.
E.
Torres
,
A. T.
Blumenau
, and
P. U.
Biedermann
,
ChemPhysChem
12
,
999
(
2011
).
7.
A.
Jimenez
,
A.
Sarsa
,
M.
Blazquez
, and
T.
Pineda
,
J. Phys. Chem. C
114
,
21309
(
2010
).
8.
A. F.
Raigoza
,
D. A.
Villalba
,
N. A.
Kautz
, and
S. A.
Kandel
,
Surf. Sci.
604
,
1584
(
2010
).
9.
J. D.
Yang
,
M. R.
Li
,
H. X.
Li
,
Y. L.
Yang
,
Y.
Kashimura
,
C.
Wang
,
K.
Torimitsu
,
X. Q.
Lu
, and
W. P.
Hu
,
J. Phys. Chem. C
114
,
12320
(
2010
).
10.
N. T. K.
Thanh
and
L. A. W.
Green
,
Nanotoday
5
,
213
(
2010
).
11.
E.
Naveau
,
C.
Calberg
,
C.
Detrembleur
,
C.
Jerome
, and
M.
Alexandre
,
Appl. Clay Sci.
51
,
467
(
2011
).
12.
C. A.
Eckert
,
B. L.
Knutson
, and
P. G.
Debenedetti
,
Nature (London)
383
,
313
(
1996
).
13.
14.
B.
Hojjati
and
P. A.
Charpentier
,
Polymer.
51
,
5345
(
2010
).
15.
16.
A. E.
Saunders
,
P. S.
Shah
,
E. J.
Park
,
K. T.
Lim
,
K. P.
Johnston
, and
B. A.
Korgel
,
J. Phys. Chem. B.
108
,
15969
(
2004
).
17.
P. S.
Shah
,
J. D.
Holmes
,
R. C.
Doty
,
K. P.
Johnston
, and
B. A.
Korgel
,
J. Am. Chem. Soc.
122
,
4245
(
2000
).
18.
P. S.
Shah
,
S.
Husain
,
K. P.
Johnston
, and
B. A.
Korgel
,
J. Phys. Chem. B
105
,
9433
(
2001
).
19.
P. S.
Shah
,
S.
Husain
,
K. P.
Johnston
, and
B. A.
Korgel
,
J. Phys. Chem. B.
106
,
12178
(
2002
).
20.
M.
Ji
,
X. Y.
Chen
,
C. M.
Wai
, and
J. L.
Fulton
,
J. Am. Chem. Soc.
121
,
2631
(
1999
).
21.
V. H.
Dalvi
,
V.
Srinivasan
, and
P. J.
Rossky
,
J. Phys. Chem. C.
114
,
15562
(
2010
).
22.
V. H.
Dalvi
,
V.
Srinivasan
, and
P. J.
Rossky
,
J. Phys. Chem. C.
114
,
15553
(
2010
).
23.
A. E.
Saunders
and
B. A.
Korgel
,
J. Phys. Chem. B.
108
,
16732
(
2004
).
24.
P.
Schapotschnikow
,
R.
Pool
, and
T. J. H.
Vlugt
,
Nano Lett.
8
,
2930
(
2008
).
25.
B. A.
Korgel
,
S.
Fullam
,
S.
Connolly
, and
D.
Fitzmaurice
,
J. Phys. Chem. B.
102
,
8379
(
1998
).
26.
C. J.
Shih
,
S. C.
Lin
,
M. S.
Strano
, and
D.
Blankschtein
,
J. Am. Chem. Soc.
132
,
14638
(
2010
).
27.
A.
Vishnyakov
,
Y. Y.
Shen
, and
M. S.
Tomassone
,
J. Chem. Phys.
129
,
174704
(
2008
).
28.
C. A.
Fernandez
,
E. M.
Hoppes
,
J. G.
Bekhazi
,
C. M.
Wang
,
R. H.
Wiacek
,
M. G.
Warner
,
G. E.
Fryxell
,
J. T.
Bays
, and
R. S.
Addleman
,
J. Phys. Chem. C
112
,
13947
(
2008
).
29.
K. T.
Marla
and
J. C.
Meredith
,
Langmuir
21
,
487
(
2005
).
30.
P. S.
Shah
,
T.
Hanrath
,
K. P.
Johnston
, and
B. A.
Korgel
,
J. Phys. Chem. B
108
,
9574
(
2004
).
31.
N.
Patel
and
S. A.
Egorov
,
J. Chem. Phys.
126
,
054706
(
2007
).
32.
N.
Goubet
,
J.
Richardi
,
P. A.
Albouy
, and
M. P.
Pileni
,
J. Phys. Chem. Lett.
2
,
417
(
2011
).
33.
R.
Orlik
,
A. C.
Mitus
,
B.
Kowalczyk
,
A. Z.
Patashinski
, and
B. A.
Grzybowski
,
J. Non-Cryst. Solids
355
,
1360
(
2009
).
34.
S. J.
Khan
,
F.
Pierce
,
C. M.
Sorensen
, and
A.
Chakrabarti
,
Langmuir
25
,
13861
(
2009
).
35.
Y.
Lalatonne
,
J.
Richardi
, and
M. P.
Pileni
,
Nat. Mater.
3
,
121
(
2004
).
36.
P. S.
Shah
,
J. D.
Holmes
,
K. P.
Johnston
, and
B. A.
Korgel
,
J. Phys. Chem. B
106
,
2545
(
2002
).
37.
N. Z.
Clarke
,
C.
Waters
,
K. A.
Johnson
,
J.
Satherley
, and
D. J.
Schiffrin
,
Langmuir
17
,
6048
(
2001
).
38.
B.
Vincent
,
J.
Edwards
,
S.
Emmett
, and
A.
Jones
,
Colloids Surf.
18
,
261
(
1986
).
39.
E.
Rabani
and
S. A.
Egorov
,
J. Phys. Chem. B
106
,
6771
(
2002
).
40.
C.
Eun
and
M. L.
Berkowitz
,
J. Phys. Chem. B
113
,
13222
(
2009
).
41.
P.
Schapotschnikow
and
T. J. H.
Vlugt
,
J. Phys. Chem. C
114
,
2531
(
2010
).
42.
A.
Pertsin
,
D.
Platonov
, and
M.
Grunze
,
J. Chem. Phys.
122
,
244708
(
2005
).
43.
B. J.
Berne
,
J. D.
Weeks
, and
R. H.
Zhou
,
Annu. Rev. Phys. Chem.
60
,
85
(
2009
).
44.
D.
Chandler
,
Nature (London)
437
,
640
(
2005
).
45.
C. S.
Eun
and
M. L.
Berkowitz
,
J. Phys. Chem. B
114
,
3013
(
2010
).
46.
N.
Choudhury
and
B. M.
Pettitt
,
J. Phys. Chem. B
110
,
8459
(
2006
).
47.
Z. J.
Xu
,
X. N.
Yang
, and
Z.
Yang
,
Nano Lett.
10
,
985
(
2010
).
48.
Z.
Yang
,
X. N.
Yang
,
Z. J.
Xu
, and
N. N.
Yang
,
J. Chem. Phys.
133
,
094702
(
2010
).
49.
H.
Higashi
,
Y.
Iwai
,
H.
Uchida
, and
Y.
Arai
,
J. Supercrit. Fluids
13
,
93
(
1998
).
50.
S.
Senapati
,
J. S.
Keiper
,
J. M.
DeSimone
,
G. D.
Wignall
,
Y. B.
Melnichenko
,
H.
Frielinghaus
, and
M. L.
Berkowitz
,
Langmuir
18
,
7371
(
2002
).
51.
C.
Powell
,
N.
Fenwick
,
F.
Bresme
, and
N.
Quirke
,
Colloids Surf., A
206
,
241
(
2002
).
52.
M. J.
Hostetler
,
J. E.
Wingate
,
C. J.
Zhong
,
J. E.
Harris
,
R. W.
Vachet
,
M. R.
Clark
,
J. D.
Londono
,
S. J.
Green
,
J. J.
Stokes
,
G. D.
Wignall
,
G. L.
Glish
,
M. D.
Porter
,
N. D.
Evans
, and
R. W.
Murray
,
Langmuir
14
,
17
(
1998
).
53.
R. L.
Whetten
,
J. T.
Khoury
,
M. M.
Alvarez
,
S.
Murthy
,
I.
Vezmar
,
Z. L.
Wang
,
P. W.
Stephens
,
C. L.
Cleveland
,
W. D.
Luedtke
, and
U.
Landman
,
Adv. Mater.
8
,
428
(
1996
).
54.
Z.
Yang
,
X. N.
Yang
, and
Z. J.
Xu
,
J. Phys. Chem. C
112
,
4937
(
2008
).
55.
K.
Tay
and
F.
Bresme
,
Mol. Simul.
31
,
515
(
2005
).
56.
W. D.
Luedtke
and
U.
Landman
,
J. Phys. Chem. B
102
,
6566
(
1998
).
57.
W. D.
Luedtke
and
U.
Landman
,
J. Phys. Chem.
100
,
13323
(
1996
).
58.
See supplementary material at http://dx.doi.org/10.1063/1.3661982 for the results shown in Figs. S1–S7.
59.
N.
Choudhury
and
B. M.
Pettitt
,
J. Am. Chem. Soc.
127
,
3556
(
2005
).
60.
J. H.
Walther
,
R. L.
Jaffe
,
E. M.
Kotsalis
,
T.
Werder
,
T.
Halicioglu
, and
P.
Koumoutsakos
,
Carbon
42
,
1185
(
2004
).
61.
E.
Guardia
,
R.
Rey
, and
J. A.
Padro
,
Chem. Phys.
155
,
187
(
1991
).
62.
G.
Ciccotti
,
M.
Ferrario
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys.
129
,
241
(
1989
).
63.
B.
Wu
and
X.
Yang
,
J. Colloid Interface Sci.
361
,
1
(
2011
).
64.
Y.
Hu
,
B.
Wu
,
Z. J.
Xu
,
Z.
Yang
, and
X. N.
Yang
,
J. Colloid Interface Sci.
353
,
22
(
2011
).
65.
L. W.
Li
,
D.
Bedrov
, and
G. D.
Smith
,
J. Chem. Phys.
123
,
204504
(
2005
).
66.
D.
Bedrov
,
G. D.
Smith
, and
J. S.
Smith
,
J. Chem. Phys.
119
,
10438
(
2003
).
67.
P. K.
Ghorai
and
S. C.
Glotzer
,
J. Phys. Chem. C
111
,
15857
(
2007
).

Supplementary Material

You do not currently have access to this content.