Using the recent NF (near-field) formulation for electrodynamics on the nanoscale, we simulate transport in a Y-shape gold nanostructure in the presence of 2-level molecules. NF is shown to be easily integrated with the Liouville equation, producing a simple and efficient nanopolaritons (plasmons-excitons) solver, with a large time step. Two cases are considered: coating of the gold structure with molecular layers thinner than the structure, and filling space with aligned molecules. In both cases significant effects on the radiation transport are obtained even for low molecular densities. At low densities the effects are primarily an overall reduction of the plasmonics peak, but at higher densities there is a significant selectivity control by the molecules. A redshift is predicted, especially for the space-filling case. The combined nanopolariton shows qualitative hybridization, and the spectral peaks separate with increasing coupling, i.e., with increasing molecular densities. The results open the way to “control of light by light,” i.e., controlling plasmonic light transport by inducing a change in the direction of the guiding molecular dipoles through radiation or other means.

1.
D.
Neuhauser
and
K.
Lopata
,
J. Chem. Phys.
127
(
15
),
154715
(
2007
).
2.
K.
Lopata
and
D.
Neuhauser
,
J. Chem. Phys.
131
(
1
),
014701
(
2009
).
3.
K.
Lopata
and
D.
Neuhauser
,
J. Chem. Phys.
130
(
10
),
104707
(
2009
).
4.
C.
Arnsten
,
K.
Lopata
,
M. R.
Wall
,
L.
Bartell
, and
D.
Neuhauser
,
J. Chem. Phys.
134
(
08
),
084101
(
2011
).
5.
D.
Neuhauser
,
C.
Arnsten
, and
K. A.
Lopata
,
Encyclopedia of Nanotechnology
, edited by
B.
Bhushan
(
Springer
,
New York
,
2012
) (to be published).
6.
Y. B.
Zheng
,
Y.-W.
Yang
,
L.
Jensen
,
L.
Fang
,
B. K.
Juluri
,
A. H.
Flood
,
P. S.
Weiss
,
J. F.
Stoddart
, and
T. J.
Huang
,
Nano Lett.
9
(
2
),
819
(
2009
).
7.
A. A.
Lazarides
,
K.
Lance Kelly
,
T. R.
Jensen
, and
G. C.
Schatz
,
J. Mol. Struct.: THEOCHEM
529
(
1–3
),
59
(
2000
).
8.
J. Y.
Yan
,
W.
Zhang
,
S. Q.
Duan
,
X. G.
Zhao
, and
A. O.
Govorov
,
Phys. Rev. B
77
(
16
),
165301
(
2008
).
9.
J.
Lee
,
P.
Hernandez
,
J.
Lee
,
A. O.
Govorov
, and
N. A.
Kotov
,
Nature Mater.
6
(
4
),
291
(
2007
).
10.
N. T.
Fofang
,
T.-H.
Park
,
O.
Neumann
,
N. A.
Mirin
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
8
(
10
),
3481
(
2008
).
11.
D. J.
Masiello
and
G. C.
Schatz
,
J. Chem. Phys.
132
(
6
),
064102
(
2010
).
12.
M.
Sukharev
and
M.
Galperin
,
Phys. Rev. B
81
,
165307
(
2010
).
13.
A.
Coomar
,
C.
Arntsen
,
K. A.
Lopata
,
S.
Pistinner
, and
D.
Neuhauser
,
J. Chem. Phys.
135
(
8
),
084121
(
2011
).
14.
Y.
Sivan
,
S.
Xiao
,
U. K.
Chettiar
,
A. V.
Kildishev
, and
V. M.
Shalaev
,
Opt. Express
17
(
26
),
24060
(
2009
).
15.
A.
Taflove
and
S.
Hagness
,
Computational Electrodynamics : The Finite-Difference Time-Domain Method
, 2nd ed. (
Artech House
,
Boston, MA
,
2000
).
16.
C.
Girard
,
Rep. Prog. Phys.
68
(
8
),
1883
(
2005
).
17.
S. K.
Gray
and
T.
Kupka
,
Phys. Rev. B
68
(
4
),
045415
(
2003
).
18.
E.
Prodan
,
C.
Radloff
,
N. J.
Halas
, and
P.
Nordlander
,
Science
302
(
5644
),
419
(
2003
).
You do not currently have access to this content.