Bimolecular chemical reaction control of gaseous CO and H2 at room temperature and atmospheric pressure, without any catalyst, using shaped femtosecond laser pulses is presented. High intensity laser radiation applied to a reaction cell facilitates non-resonant bond breakage and the formation of a range of ions, which can then react to form new products. Stable reaction products are measured after irradiation of a reaction cell, using time of flight mass spectroscopy. Bond formation of C–O, C–C, and C–H bonds is demonstrated as CO2+, C2H2+, CH+, and CH3+ were observed in the time of flight mass spectrum of the product gas, analyzed after irradiation. The formation of CO2 is shown to be dependent on laser intensity, irradiation time, and on the presence of H2 in the reaction cell. Using negatively chirped laser pulses more C–O bond formation takes place as compared to more C–C bond formation for unchirped pulses.

1.
M. E.
Dry
,
Catalysis Today
71
(
3–4
),
227
(
2002
).
2.
B. D.
Blaustein
and
Y. C.
Fu
,
Adv. Chem. Ser.
80
,
259
(
1969
).
3.
I. M.
Campbell
and
B. J.
Handy
,
J. Chem. Soc., Faraday Trans.
1
(
74
),
316
(
1978
).
4.
E. L.
Wong
,
A. E.
Potter
, and
F. E.
Belles
, NASA Tech Note D-4162 (
1967
).
5.
F. F.
Crim
,
J Phys Chem
100
(
31
),
12725
(
1996
).
6.
C.
Brif
,
R.
Chakrabarti
, and
H.
Rabitz
,
New J. Phys.
12
,
075008
(
2010
).
7.
T.
Brixner
and
G.
Gerber
,
ChemPhysChem
4
(
5
),
418
(
2003
).
8.
M.
Dantus
and
V. V.
Lozovoy
,
Chem. Rev.
104
(
4
),
1013
(
2004
).
9.
V. V.
Lozovoy
and
M.
Dantus
,
Annu Rep Prog Chem C
102
,
227
258
(
2006
).
10.
A.
Assion
,
T.
Baumert
,
M.
Bergt
,
T.
Brixner
,
B.
Kiefer
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
,
Science
282
(
5390
),
919
(
1998
).
11.
D.
Meshulach
and
Y.
Silberberg
,
Nature
396
,
239
(
1998
).
12.
G.
Vogt
,
G.
Krampert
,
P.
Niklaus
,
P.
Nuernberger
, and
G.
Gerber
,
Phys. Rev. Lett.
94
,
068305
(
2005
).
13.
T. C.
Weinacht
,
R.
Bartels
,
S.
Backus
,
P. H.
Bucksbaum
,
B.
Pearson
,
J. M.
Geremia
,
H.
Rabitz
,
H. C.
Kapteyn
, and
M. M.
Murnane
,
Chem. Phys. Lett.
344
(
3–4
),
333
(
2001
).
14.
R. J.
Levis
and
H. J.
Rabitz
,
J. Phys. Chem. A
106
(
27
),
6427
(
2002
).
15.
X.
Zhu
,
T. C.
Gunaratne
,
V. V.
Lozovoy
, and
M.
Dantus
,
J. Phys. Chem. A
113
(
17
),
5264
(
2009
).
16.
R. J.
Levis
,
J. Phys. Chem. A
113
(
17
),
5267
(
2009
).
17.
V. V.
Lozovoy
,
X.
Zhu
,
T. C.
Gunaratne
,
D. A.
Harris
,
J. C.
Shane
, and
M.
Dantus
,
J. Phys. Chem. A
112
(
17
),
3790
(
2008
).
18.
A.
du Plessis
,
C. A.
Strydom
, and
L. R.
Botha
,
Int J Mol Sci
11
(
3
),
1114
(
2010
).
19.
J. L.
Krause
,
M.
Shapiro
, and
P.
Brumer
,
J. Chem. Phys.
92
(
2
),
1126
(
1990
).
20.
R. A.
Bartels
, Ph.D. dissertation,
University of Michigan
,
2002
.
21.
P.
Nuernberger
,
D.
Wolpert
,
H.
Weiss
, and
G.
Gerber
,
PNAS
107
(
23
),
10366
(
2010
).
22.
D.
Babankova
,
S.
Civis
, and
L.
Juha
,
Prog Quant Electron
30
(
2–3
),
75
(
2006
).
23.
S.
Civis
,
D.
Babankova
,
J.
Cihelka
,
P.
Sazama
, and
L.
Juha
,
J. Phys. Chem. A
112
(
31
),
7162
(
2008
).
24.
F.
Verluise
,
V.
Laude
,
Z.
Cheng
,
Ch.
Spielmann
, and
P.
Tournois
,
Opt. Lett.
25
,
575
(
2000
).
25.
A.
Couairon
and
Mysyrowicz
,
Phys. Rep.
441
(
2–4
),
47
(
2007
).
26.
J.
Park
,
J-H.
Lee
, and
C. H.
Nam
,
Opt. Express
16
(
7
),
4465
(
2008
).
27.
J.
Yang
,
Y.
Yang
,
W.
Rui
, and
H.
Wei
,
Sci China Ser E-Tech Sci
51
(
7
),
849
(
2008
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.3662129 for more detailed mass spectra and raw data of Figure 1, as well as the corresponding detailed mass spectra and raw data corresponding to Figures 7–9.

Supplementary Material

You do not currently have access to this content.