Synthetic chemically powered nanomotors often rely on the environment for their fuel supply. The propulsion properties of such motors can be altered if the environment in which they move is chemically active. The dynamical properties of sphere dimer motors, composed of linked catalytic and noncatalytic monomers, are investigated in active media. Chemical reactions occur at the catalytic monomer and the reactant or product of this reaction is involved in cubic autocatalytic or linear reactions that take place in the bulk phase environment. For these reactions, as the bulk phase reaction rates increase, the motor propulsion velocity decreases. For the cubic autocatalytic reaction, this net effect arises from a competition between a reduction of the nonequilibrium concentration gradient that leads to smaller velocity and the generation of fuel in the environment that tends to increase the motor propulsion. The role played by detailed balance in determining the form of the concentration gradient in the motor vicinity in the active medium is studied. Simulations are carried out using reactive multiparticle collision dynamics and compared with theoretical models to obtain further insight into sphere dimer dynamics in active media.

1.
R. D.
Vale
and
R. A.
Milligan
,
Science
288
,
88
(
2000
).
2.
J. E.
Molloy
and
C.
Veigel
,
Science
300
,
2045
(
2003
).
3.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. St.
Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
,
J. Am. Chem. Soc.
126
,
13424
(
2004
).
4.
T. R.
Kline
,
W. F.
Paxton
,
T. E.
Mallouk
, and
A.
Sen
,
Angew. Chem., Int. Ed.
44
,
744
(
2005
).
5.
W. F.
Paxton
,
S.
Sundararajan
,
T. E.
Mallouk
, and
A.
Sen
,
Angew. Chem., Int. Ed.
45
,
5420
(
2006
).
6.
S.
Fournier-Bidoz
,
A. C.
Arsenault
,
I.
Manners
, and
G. A.
Ozin
,
Chem. Commun. (Cambridge)
,
2005
,
441
.
7.
G. A.
Ozin
,
I.
Manners
,
S.
Fournier-Bidoz
, and
A.
Arsenault
,
Adv. Mater.
17
,
3011
(
2005
).
8.
Y.
Wang
,
R. M.
Hernandez
,
D. J.
Bartlett
 , Jr.
,
J. M.
Bingham
,
T. R.
Kline
,
A.
Sen
, and
T. E.
Mallouk
,
Langmuir
22
,
10451
(
2006
).
9.
R.
Laocharoensuk
,
J.
Burdick
, and
Y.
Wang
,
ACS Nano
5
,
1069
(
2008
).
10.
W. F.
Paxton
,
A.
Sen
, and
T. E.
Mallouk
,
Angew. Chem., Int. Ed.
11
,
6462
(
2005
).
11.
J.
Burdick
,
R.
Laocharoensuk
,
P. M.
Wheat
,
J. D.
Posner
, and
J.
Wang
,
J. Am. Chem. Soc.
130
,
8164
(
2008
).
12.
A.
Ghosh
and
P.
Fischer
,
Nano Lett.
9
,
2243
(
2009
).
13.
N.
Mano
and
A.
Heller
,
J. Am. Chem. Soc.
127
,
11574
(
2005
).
14.
D.
Kagan
,
P.
Calvo-Marzal
,
S.
Balasubramanian
,
S.
Sattayasamitsathit
,
K. M.
Manesh
,
G.
Flechsig
, and
J.
Wang
,
J. Am. Chem. Soc.
131
,
12082
(
2009
).
15.
L. F.
Valadares
,
Y.
Tao
,
N. S.
Zacharia
,
V.
Kitaev
,
F.
Galembeck
,
R.
Kapral
, and
G. A.
Ozin
,
Small
6
,
565
(
2010
).
16.
H.
Ke
,
S.
Ye
,
R. L.
Carroll
, and
K.
Showalter
,
J. Phys. Chem. A
114
,
5462
(
2010
).
17.
G.
Rückner
and
R.
Kapral
,
Phys. Rev. Lett.
98
,
150603
(
2007
).
18.
Y.-G.
Tao
and
R.
Kapral
,
J. Chem. Phys.
128
,
164518
(
2008
).
19.
S.
Thakur
and
R.
Kapral
,
J. Chem. Phys.
133
,
204505
(
2010
).
20.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
,
Phys. Rev. Lett.
94
,
220801
(
2005
).
21.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
,
New J. Phys.
9
,
126
(
2007
).
22.
A.
Erbe
,
M.
Zientara
,
L.
Baraban
,
C.
Kreidler
, and
P.
Leiderer
,
J. Phys. Condens. Matter
20
,
404215
(
2008
).
23.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
,
Phys. Rev. Lett.
99
,
048102
(
2007
).
24.
S.
Ebbens
,
R. A. L.
Jones
,
A. J.
Ryan
,
R.
Golestanian
, and
J. R.
Howse
,
Phys. Rev. E
82
,
015304
(
2010
).
25.
M. N.
Popescu
,
S.
Dietrich
,
M.
Tasinkevych
, and
J.
Ralston
,
Eur. Phys. J. E
31
,
351
(
2010
).
26.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
110
,
8605
(
1999
).
27.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
112
,
72609
(
2000
).
28.
K.
Rohlf
,
S.
Fraser
, and
R.
Kapral
,
Comput. Phys. Commun.
179
,
132
(
2008
).
29.
K.
Tucci
and
R.
Kapral
,
J. Phys. Chem. B
109
,
21300
(
2005
).
30.
C.
Echeverria
and
R.
Kapral
,
Physica D
239
,
791
(
2010
).
31.
R.
Kapral
,
Adv. Chem. Phys.
140
,
89
(
2008
).
32.
G.
Gompper
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
,
Adv. Polym. Sci.
221
,
1
(
2009
).
33.
F. C.
Collins
and
G. E.
Kimball
,
J. Colloid Sci.
4
,
425
(
1949
).
34.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation - From Algorithms to Applications
(
Academic
,
San Diego
,
1996
).
35.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
36.
T.
Ihle
and
D. M.
Kroll
,
Phys. Rev. E
63
,
020201
(
2001
).
37.
T.
Ihle
and
D. M.
Kroll
,
Phys. Rev. E
67
,
066705
(
2003
).
38.
This is the case for the iodate-arsenous acid reaction whose overall kinetics is accurately described by cubic autocatalysis. However, the actual mechanism is quite complex and the overall rate equation is obtained by eliminating fast intermediate species from the rate equations. See
A.
Saul
and
K. S.
Showalter
, in
Oscillations and Traveling Waves in Chemical Systems
, edited by
R. J.
Field
and
M.
Burger
(
Wiley-Interscience
,
New York
,
1985
), pp.
419
439
.
39.
S. R.
de Groot
and
P.
Mazur
,
Nonequilibrium Thermodynamics
(
North-Holland
,
Amsterdam
,
1962
).
40.
It is well known that detailed balance must be broken for directed motion and this feature enters in models for ratchets and molecular motors. See, for example,
R. D.
Astumian
,
Science
276
,
917
(
1997
);
[PubMed]
41.
A similar calculation was carried out for a hard sphere model for the catalytic reaction in Ref. 43. Our particles interact with the catalytic sphere by repulsive LJ potentials and the simulations reported here provide accurate estimates of the parameters needed for the theoretical model. Applications of similar methods to enzyme kinetics are given in
J.-X.
Chen
and
R.
Kapral
,
J. Chem. Phys.
134
,
044503
(
2011
).
42.
43.
K.
Tucci
and
R.
Kapral
,
J. Chem. Phys.
120
,
8262
(
2004
).
44.
M.
von Smoluchowski
,
Ann. Phys.
48
,
1003
(
1915
).
45.
S. H.
Lee
and
R.
Kapral
,
J. Chem. Phys.
121
,
11163
(
2004
).
46.
M.
Ripoll
,
K.
Mussawisade
,
R. G.
Winkler
, and
G.
Gompper
,
Phys. Rev. E
72
,
016701
(
2005
).
47.
N.
Kikuchi
,
C. M.
Pooley
,
J. F.
Ryder
, and
J. M.
Yeomans
,
J. Chem. Phys.
119
,
6388
(
2003
).
48.
Y.-G.
Tao
and
R.
Kapral
,
J. Chem. Phys.
131
,
024113
(
2009
).
49.
R.
Golestanian
,
Phys. Rev. Lett.
102
,
188305
(
2009
).
50.
H. C.
Berg
,
E. coli in Motion
(
Springer-Verlag
,
New York
,
2004
).
51.
J.
Palacci
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
,
Phys. Rev. Lett.
105
,
088304
(
2010
).
52.
F.
Peruani
and
L. G.
Morelli
,
Phys. Rev. Lett.
99
,
010602
(
2007
).
53.
Y.
Termonia
and
J.
Ross
,
Proc. Natl. Acad. Sci. U.S.A.
78
,
2952
(
1981
).
54.
S.
Thakur
and
R.
Kapral
,
Angew. Chem., Int. Ed.
(in press).
55.
R. C.
Desai
and
R.
Kapral
,
Dynamics of Self-Organized and Self-Assembled Structures
(
Cambridge University Press
,
Cambridge, England
,
2009
).
56.
Similar considerations apply to the quadratic autocatalytic reaction,
$B+A \rightleftharpoons 2A$
B+A2A
. Cubic autocatalysis was chosen in this study since, in applications where the active medium exhibits a chemical front where A consumes B, cubic fronts have a simpler structure than quadratic fronts [
R. A.
Fisher
,
Ann. Eugenics
7
,
335
(
1937
);
A.
Kolmogorov
,
I.
Petrovsky
, and
N.
Piskunov
,
Bull. Univ. Moscow Ser. Int. Sec. A
1
,
1
(
1937
);
J. D.
Murray
,
Mathematical Biology
(
Springer
,
Berlin
,
1989
)].
You do not currently have access to this content.