We present an analysis of the dispersion interaction energy and forces in density-functional theory from the point of view of the adiabatic connection between the Kohn–Sham non-interacting and fully interacting systems. Accurate coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] densities are computed for the helium dimer and used to construct the exchange-correlation potential of Kohn–Sham theory, showing agreement with earlier results presented for the Hartree–Fock–Kohn–Sham method [M. Allen and D. J. Tozer, J. Chem. Phys.117, 11113 (2002)

]. The accuracy of the methodology utilized to determine these solutions is checked by calculation of the Hellmann–Feynman forces based on the Kohn–Sham densities, which are compared with analytic CCSD(T) forces. To ensure that this comparison is valid in a finite atomic-orbital basis set, we employ floating Gaussian basis functions throughout and all results are counterpoise corrected. The subtle charge-rearrangement effects associated with the dispersion interaction are highlighted as the origin of a large part of the dispersion force. To recover the exchange-correlation components of the interaction energy, adiabatic connections are constructed for the supermolecular system and for its constituent atoms; subtraction of the resulting adiabatic-connection curves followed by integration over the interaction strength recovers the exchange-correlation contribution relevant to the density-functional description of the dispersion interaction. The results emphasize the long-ranged, dynamically correlated nature of the dispersion interaction between closed-shell species. An alternative adiabatic-connection path is also explored, where the electronic interactions are introduced in a manner that emphasizes the range of the electronic interactions, highlighting their purely long-ranged nature, consistent with the success of range-separated hybrid approaches in this context.

1.
J.
Harris
and
R. O.
Jones
,
J. Phys. F: Met. Phys.
4
,
1170
(
1974
).
2.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
3.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
4.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
15
,
6006
(
1977
).
5.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
6.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
7.
D. C.
Langreth
,
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
P.
Hyldgaard
, and
B. I.
Lundqvist
,
Int. J. Quantum Chem.
101
,
599
(
2005
).
8.
T.
Thornhauser
,
V. R.
Cooper
,
S.
Li
,
A.
Pudzer
,
P.
Hylgaard
, and
D. C.
Langreth
,
Phys. Rev. B
76
,
125112
(
2007
).
9.
K.
Lee
,
E. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
,
Phys. Rev. B
82
,
081101
(
2010
).
10.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
130
,
104105
(
2009
).
11.
O. A.
Vydrov
and
T.
Van Voorhis
,
Phys. Rev. Lett.
103
,
063004
(
2009
).
12.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
133
,
244103
(
2010
).
13.
A.
Savin
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), p.
327
.
14.
J. G.
Ángyán
,
I. C.
Gerber
,
A.
Savin
, and
J.
Toulouse
,
Phys. Rev. A
72
,
012510
(
2005
).
15.
E.
Goll
,
H.-J.
Werner
, and
H.
Stoll
,
Phys. Chem. Chem. Phys.
7
,
3917
(
2005
).
16.
T.
Leininger
,
H.
Stoll
,
H. J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
17.
R.
Pollet
,
A.
Savin
,
T.
Leininger
, and
H.
Stoll
,
J. Chem. Phys.
116
,
1250
(
2002
).
18.
E.
Fromager
,
J.
Toulouse
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
126
,
074111
(
2007
).
19.
E.
Fromager
,
F.
Réal
,
P.
Wåhlin
,
U.
Wahlgren
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
131
,
054107
(
2009
).
20.
E.
Fromager
,
R.
Cimiraglia
, and
H. J. Aa.
Jensen
,
Phys. Rev. A
81
,
024502
(
2010
).
21.
J.
Toulouse
,
A.
Savin
, and
H.-J.
Flad
,
Int. J. Quantum Chem.
100
,
1047
(
2004
).
22.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
J. Chem. Phys.
122
,
014110
(
2005
).
23.
E.
Goll
,
H. J.
Werner
,
H.
Stoll
,
T.
Leininger
,
P.
Gori-Giorgi
, and
A.
Savin
,
Chem. Phys.
329
,
276
(
2006
).
24.
E.
Goll
,
M.
Ernst
,
F.
Moegle-Hofacker
, and
H.
Stoll
,
J. Chem. Phys.
130
,
234112
(
2009
).
25.
D.
Bohm
and
D.
Pines
,
Phys. Rev.
82
,
625
(
1951
).
26.
D.
Pines
and
D.
Bohm
,
Phys. Rev.
85
,
338
(
1952
).
27.
D.
Bohm
and
D.
Pines
,
Phys. Rev.
92
,
609
(
1953
).
29.
P.
Noziéres
and
D.
Pines
,
Phys. Rev.
111
,
442
(
1958
).
30.
A. D.
McLachlan
and
M. A.
Ball
,
Rev. Mod. Phys.
36
,
844
(
1964
).
31.
32.
D. L.
Freeman
,
Phys. Rev. B
15
,
5512
(
1977
).
33.
Z. D.
Yan
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. B
61
,
16430
(
2000
).
34.
35.
M.
Fuchs
,
Y.-M.
Niquet
,
X.
Gonze
, and
K.
Burke
,
J. Chem. Phys.
122
,
094116
(
2005
).
36.
F.
Furche
and
T.
van Voorhis
,
J. Chem. Phys.
122
,
164106
(
2005
).
37.
M.
Hellgren
and
U.
von Barth
,
Phys. Rev. B
76
,
075107
(
2007
).
38.
M.
Hellgren
and
U.
von Barth
,
Phys. Rev. B
78
,
115107
(
2008
).
39.
F.
Furche
,
J. Chem. Phys.
129
,
114105
(
2008
).
40.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
,
J. Chem. Phys.
129
,
231101
(
2008
).
41.
P.
García-González
,
Phys. Rev. A
79
,
062502
(
2009
).
42.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
,
J. Chem. Phys.
131
,
154115
(
2009
).
43.
B. G.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
130
,
081105
(
2009
).
44.
H.-V.
Nguyen
and
S.
de Gironcoli
,
Phys. Rev. B
79
,
205114
(
2009
).
45.
J.
Toulouse
,
I. C.
Gerber
,
G.
Jansen
,
A.
Savin
, and
J. G.
Ángyán
,
Phys. Rev. Lett.
102
,
096404
(
2009
).
46.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
,
J. Chem. Phys.
132
,
234114
(
2010
).
47.
A.
Heßelmann
and
A.
Görling
,
Mol. Phys.
108
,
359
(
2010
).
48.
G.
Jansen
,
R.-F.
Liu
, and
J. G.
Ángyán
,
J. Chem. Phys.
133
,
154106
(
2010
).
49.
A.
Ruzsinszky
,
J. P.
Perdew
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
6
,
127
(
2010
).
50.
J.
Toulouse
,
W.
Zhu
,
J. G.
Ángyán
, and
A.
Savin
,
Phys. Rev. A
82
,
032502
(
2010
).
51.
J.
Paier
,
B. G.
Janesko
,
T. M.
Henderson
,
G. E.
Scuseria
,
A.
Grüneis
, and
G.
Kresse
,
J. Chem. Phys.
132
,
094103
(
2010
).
52.
W.
Klopper
,
A. M.
Teale
,
S.
Coriani
,
T. B.
Pedersen
, and
T.
Helgaker
,
Chem. Phys. Lett.
510
,
147
(
2011
).
53.
B.
Jeziorski
and
W.
Kolos
, in
Molecular Interactions
, edited by
H.
Ratajczak
and
W. J.
Orville-Thomas
(
Wiley
,
New York
,
1982
), Vol. 3, p.
1
.
54.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev.
94
,
1887
(
1994
).
55.
K.
Szalewicz
and
B.
Jeziorski
, in
Molecular Interactions: From van der Waals to Strongly Bound Complexes
, edited by
S.
Scheiner
(
Wiley
,
New York
,
1996
), p.
3
.
56.
A. J.
Misquitta
,
R.
Podeszwa
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
123
,
214103
(
2005
).
57.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
116
,
515
(
2002
).
58.
M.
Elstner
,
P.
Hobza
,
T.
Frauenheim
,
S.
Sushai
, and
E.
Kaxiras
,
J. Chem. Phys.
114
,
5149
(
2001
).
59.
P.
Jurecka
,
J.
Cerný
,
P.
Hobza
, and
D. R.
Salahub
,
J. Comput. Chem.
28
,
555
(
2007
).
60.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
61.
F. A.
Gianturco
and
F.
Paesani
,
J. Chem. Phys.
113
,
3011
(
2000
).
62.
X.
Wu
,
C.
Vargas
,
S.
Nayak
,
V.
Lotrich
, and
G.
Scoles
,
J. Chem. Phys.
115
,
8748
(
2001
).
63.
U.
Zimmerli
,
M.
Parinello
, and
P.
Komoutsakos
,
J. Chem. Phys.
120
,
2693
(
2004
).
64.
G.
Murdachaew
,
S.
de Gironcoli
, and
G.
Scoles
,
J. Phys. Chem. A
112
,
9993
(
2008
).
65.
S. N.
Steinmann
,
G.
Csonka
, and
C.
Corminboeuf
,
J. Chem. Theory Comput.
5
,
2950
(
2009
).
66.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
67.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
68.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
69.
R.
Ahlrichs
,
R.
Penco
, and
G.
Scoles
,
Chem. Phys.
19
,
119
(
1977
).
70.
71.
J. C.
Slater
and
J. G.
Kirkwood
,
Phys. Rev.
37
,
682
(
1931
).
72.
J. G.
Kirkwood
,
Phys. Z.
33
,
57
(
1932
).
73.
A.
Müller
,
Proc. R. Soc. London, Ser. A
154
,
624
(
1936
).
74.
75.
H. L.
Kramer
,
J. Chem. Phys.
53
,
2783
(
1970
).
76.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
123
,
024101
(
2005
).
77.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
122
,
154104
(
2005
).
78.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
123
,
154101
(
2005
).
79.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
154108
(
2007
).
80.
P.
Ehrenfest
,
Z. Phys.
45
,
455
(
1927
).
81.
W.
Pauli
,
Handbuch der Physik
(
Springer
,
Berlin
,
1933
).
82.
H.
Hellmann
,
Einführung in die Quantenchemie
(
Franz Deutsche
,
Leipzig
,
1937
).
83.
R. P.
Feynman
,
Phys. Rev.
56
,
340
(
1939
).
84.
M. J.
Allen
and
D. J.
Tozer
,
J. Chem. Phys.
117
,
11113
(
2002
).
85.
K. L. C.
Hunt
,
J. Chem. Phys.
78
,
6149
(
1983
).
86.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
87.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
88.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
,
J. Chem. Phys.
130
,
104111
(
2009
).
89.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
,
J. Chem. Phys.
132
,
164115
(
2010
).
90.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
,
J. Chem. Phys.
133
,
164112
(
2010
).
91.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
92.
A. C.
Hurley
,
Proc. R. Soc. London, Ser. A
226
,
170
(
1954
).
93.
A. A.
Frost
,
J. Chem. Phys.
47
,
3707
(
1967
).
94.
95.
96.
H.
Huber
,
Theor. Chim. Acta
55
,
117
(
1980
).
97.
H.
Huber
,
J. Mol. Struct.: THEOCHEM
76
,
277
(
1981
).
98.
A. C.
Hurley
,
J. Comput. Chem.
9
,
75
(
1988
).
99.
T.
Helgaker
and
J.
Almlöf
,
J. Chem. Phys.
89
,
4889
(
1988
).
100.
K.
Hirao
and
K.
Mogi
,
J. Comput Chem.
13
,
457
(
1992
).
101.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chim. Acta
75
,
111
(
1989
).
102.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
103.
H.
Koch
,
H. J. A.
Jensen
,
P.
Jørgensen
,
T.
Helgaker
,
G. E.
Scuseria
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
92
,
4924
(
1990
).
104.
K.
Hald
,
A.
Halkier
,
P.
Jørgensen
,
S.
Coriani
,
C.
Hättig
, and
T.
Helgaker
,
J. Chem. Phys.
118
,
2985
(
2003
).
105.
T.
Helgaker
, in
The Encyclopedia of Computational Chemistry
, edited by
P.
von Ragué Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
 III
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), p.
1157
.
106.
N. C.
Handy
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
81
,
5031
(
1984
).
107.
DALTON, release 2.0, a molecular electronic structure program,
2005
, see http://www.kjemi.uio.no/software/dalton/dalton.html.
108.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
109.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
110.
K. E.
Riley
,
M.
Pitonák
,
P.
Jurecka
, and
P.
Hobza
,
Chem. Rev.
110
,
5023
(
2010
).
111.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
112.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
113.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
,
R. J.
Bartlett
,
K.
Burke
, and
J. D.
Talman
,
J. Chem. Phys.
115
,
1635
(
2001
).
114.
R. T.
Sharp
and
G. K.
Horton
,
Phys. Rev.
90
,
317
(
1953
).
115.
J. D.
Talman
and
W. F.
Shadwick
,
Phys. Rev. A
14
,
36
(
1976
).
116.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
117.
T.
Korona
,
H. L.
Williams
,
R.
Bukowski
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
106
,
5109
(
1997
).
118.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
119.
R. J.
Bartlett
,
I.
Grabowski
,
S.
Hirata
, and
S.
Ivanov
,
J. Chem. Phys.
122
,
034104
(
2005
).
120.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
125
,
081104
(
2006
).
121.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
124
,
141103
(
2006
).
122.
D.
Rohr
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Mol. Struct.: THEOCHEM
762
,
193
(
2006
).
123.
A.
Hesselman
,
A. W.
Götz
,
F. D.
Sala
, and
A.
Görling
,
J. Chem. Phys.
127
,
054102
(
2007
).
124.
C.
Kollmar
and
M.
Filatov
,
J. Chem. Phys.
127
,
114104
(
2007
).
125.
D. P.
Joubert
,
J. Chem. Phys.
127
,
244104
(
2007
).
126.
C.
Kollmar
and
M.
Filatov
,
J. Chem. Phys.
128
,
064101
(
2008
).
127.
M. J. G.
Peach
,
J. A.
Kattirtzi
,
A. M.
Teale
, and
D. J.
Tozer
,
J. Phys. Chem. A
114
,
7179
(
2010
).
128.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
129.
F. A.
Bulat
,
T.
Heaton-Burgess
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
127
,
174101
(
2007
).
130.
C. O.
Almbladh
and
A. C.
Pedroza
,
Phys. Rev. A
29
,
2322
(
1984
).
131.
A. C.
Pedroza
,
Phys. Rev. A
33
,
804
(
1986
).
132.
F.
Ayrasetiawan
and
M. J.
Stott
,
Phys. Rev. B
34
,
4401
(
1986
).
133.
Y.
Li
and
J. B.
Krieger
,
Phys. Rev. A
39
,
992
(
1989
).
134.
J.
Chen
,
R. O.
Esquivel
, and
M. J.
Stott
,
Philos. Mag. B
69
,
1001
(
1994
).
135.
Y.
Zhang
,
W.
Pan
, and
W.
Yang
,
J. Chem. Phys.
107
,
7921
(
1997
).
136.
T. A.
Wesolowski
,
O.
Parisel
,
Y.
Ellinger
, and
J.
Weber
,
J. Phys. Chem. A
101
,
7818
(
1997
).
137.
F. O.
Kannemann
and
A. D.
Becke
,
J. Chem. Theory Comput.
5
,
719
(
2009
).
138.
E. D.
Murray
,
K.
Lee
, and
D. C.
Langreth
,
J. Chem. Theory Comput.
5
,
2754
(
2009
).
139.
T.
van Mourik
and
R. J.
Gdanitz
,
J. Chem. Phys.
116
,
9620
(
2002
).
140.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
141.
A.
Görling
and
M.
Levy
,
Phys. Rev. A
50
,
196
(
1994
).
142.
M.
Seidl
,
J. P.
Perdew
, and
S.
Kurth
,
Phys. Rev. A
62
,
012502
(
2000
).
143.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
144.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
145.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
146.
W.
Yang
, in
Density Matrices and Density-Functionals
, edited by
R.
Erdahl
and
V. H.
Smith
(
Reidel
,
Dordrecht, Holland
,
1987
), p.
499
.
147.
M.
Levy
and
J. P.
Perdew
, in
Single-Particle Density in Physics and Chemistry
, edited by
N. H.
March
and
B. M.
Deb
(
Academic
,
New York
,
1987
), pp.
54
55
.
148.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
149.
R.
Pollet
,
F.
Colonna
,
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Int. J. Quantum Chem.
91
,
84
(
2002
).
150.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
Mol. Phys.
103
,
2725
(
2005
).
151.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
152.
T. M.
Henderson
,
A. F.
Izmaylov
,
G. E.
Scuseria
, and
A.
Savin
,
J. Chem. Phys.
127
,
221103
(
2007
).
153.
I. C.
Gerber
and
J. G.
Ángyán
,
J. Chem. Phys.
126
,
044103
(
2007
).
154.
I. C.
Gerber
and
J. G.
Ángyán
,
Chem. Phys. Lett.
415
,
100
(
2005
).
155.
E.
Livshits
and
R.
Baer
,
Phys. Chem. Chem. Phys.
9
,
2932
(
2007
).
156.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
157.
E.
Weintraub
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Theory Comput.
5
,
754
(
2009
).
158.
M. E.
Casida
,
J. Mol. Struct.: THEOCHEM
914
,
3
(
2009
).
159.
E.
Livshits
and
R.
Baer
,
J. Phys. Chem. A
112
,
12789
(
2008
).
160.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
161.
J. E.
Harriman
,
Phys. Rev. A
27
,
632
(
1983
).
162.
J. E.
Harriman
,
Phys. Rev. A
34
,
29
(
1986
).
You do not currently have access to this content.