We introduce an improvement to the Hubbard U augmented density functional approach known as DFT+U that incorporates variations in the value of self-consistently calculated, linear-response U with changes in geometry. This approach overcomes the one major shortcoming of previous DFT+U studies, i.e., the use of an averaged Hubbard U when comparing energies for different points along a potential energy surface is no longer required. While DFT+U is quite successful at providing accurate descriptions of localized electrons (e.g., d or f) by correcting self-interaction errors of standard exchange correlation functionals, we show several diatomic molecule examples where this position-dependent DFT+

$U(\mathbf {R})$
U(R) provides a significant two- to four-fold improvement over DFT+U predictions, when compared to accurate correlated quantum chemistry and experimental references. DFT+
$U(\mathbf {R})$
U(R)
reduces errors in binding energies, frequencies, and equilibrium bond lengths by applying the linear-response, position-dependent
$U(\mathbf {R})$
U(R)
at each configuration considered. This extension is most relevant where variations in U are large across the points being compared, as is the case with covalent diatomic molecules such as transition-metal oxides. We thus provide a tool for deciding whether a standard DFT+U approach is sufficient by determining the strength of the dependence of U on changes in coordinates. We also apply this approach to larger systems with greater degrees of freedom and demonstrate how DFT+
$U(\mathbf {R})$
U(R)
may be applied automatically in relaxations, transition-state finding methods, and dynamics.

1.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
2.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
,
Phys. Rev. B
52
,
R5467
(
1995
).
3.
S.
Dudarev
,
G.
Botton
,
S.
Savrasov
,
C.
Humphreys
, and
A.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
4.
M.
Cococcioni
and
S.
De Gironcoli
,
Phys. Rev. B
71
,
035105
(
2005
).
5.
M.
Cococcioni
, in
Theoretical and Computational Methods in Mineral Physics: Geophysical Applications
,
Reviews in Mineralogy and Geochemistry
Vol.
71
(
Mineralogical Society of America
,
Chantilly, VA
,
2010
), pp.
147
167
6.
N. J.
Mosey
and
E. A.
Carter
,
Phys. Rev. B
76
,
155123
(
2007
).
7.
H. J.
Kulik
,
M.
Cococcioni
,
D. A.
Scherlis
, and
N.
Marzari
,
Phys. Rev. Lett.
97
,
103001
(
2006
).
8.
H. J.
Kulik
and
N.
Marzari
,
J. Chem. Phys.
129
,
134314
(
2008
).
9.
H. J.
Kulik
,
L. C.
Blasiak
,
N.
Marzari
, and
C. L.
Drennan
,
J. Am. Chem. Soc.
131
,
14426
(
2009
).
10.
H. J.
Kulik
and
N.
Marzari
,
J. Chem. Phys.
133
,
114103
(
2010
).
11.
P. M.
Panchmatia
,
B.
Sanyal
, and
P. M.
Oppeneer
,
Chem. Phys.
343
,
47
(
2008
).
12.
P.
Rivero
,
C.
Loschen
,
I. D. P. R.
Moreira
, and
F.
Illas
,
J. Comput. Chem.
30
,
2316
(
2009
).
13.
A.
Sorkin
,
M. A.
Iron
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
307
(
2008
).
14.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
).
15.
Note that in Ref. 4,
$\protect {d n_I}/{d \alpha _J}$
dnI/dαJ
were expressed as partial derivatives, but they are in fact total derivatives and will be referred to here throughout as such.
16.
V. L.
Campo
 Jr.
, and
M.
Cococcioni
,
J. Phys.: Condens. Matter
22
,
055602
(
2010
).
17.
H. J.
Kulik
and
N.
Marzari
,
J. Chem. Phys.
134
,
094103
(
2011
).
18.
We use standard spectroscopic notation,
$^{2S+1}\Lambda ^{(+/-)}_{(g/u)}$
Λ(g/u)(+/)2S+1
, for all diatomic molecules, where 2S + 1 is multiplicity, Λ is the projection of orbital angular momentum along the internuclear axis, (+/−) is the reflection symmetry along the internuclear axis, and (u/g) is the parity for homonuclear diatomic molecules. The letter notation in front of the term symbol refers to the order of states as identified experimentally: for the lowest energy spin state, X is the ground state, followed by higher in energy states marked A, B, C, etc. If one is referring to a higher energy spin, the lowest energy states are a, b, c, etc.
19.
H.
Hsu
,
K.
Umemoto
,
M.
Cococcioni
, and
R.
Wentzcovitch
,
Phys. Rev. B
79
,
125124
(
2009
).
20.
For DFT+U calculations there is an additional term due to the shifting of projectors that is also incorporated here and calculated appropriately by any ab initio DFT+U code.
21.
T. M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
,
J. Phys. Chem. A
112
,
12530
(
2008
).
22.
A. V.
Krukau
,
G. E.
Scuseria
,
J. P.
Perdew
, and
A.
Savin
,
J. Chem. Phys.
129
,
124103
(
2008
).
23.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
24.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
25.
State symmetry assignments were made based upon the absolute total orbital angular momentum, |Λ|, of the density and the overall symmetry of the component densities, λ, which remain as “good” quantum numbers in our density functional formalism. Additionally, the preserved spin quantum number of our systems is |$\hat{S}_z$|Ŝz.
26.
Each ultrasoft pseudopotential employed corresponds to the freely available PBE pseudopotential on the PWscf, see http://www.pwscf.org/pseudo.htm.
27.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
, see http://www.gaussian.com.
28.
See supplementary material at http://dx.doi.org/10.1063/1.3660353 for numerical verification of expressions for multiple derivatives, numerical verification of expression for the derivative of the energy in DFT+
$U(\mathbf {R})$
U(R)
, and practical details regarding interpolations of forces and energies. Comparison of DFT+
$U(\protect \mathbf {R})$
U(R)
results to those from a structurally consistent DFT+U are provided for select molecules in the supplementary information.
29.
The self-consistent Uscf is calculated directly on the DFT+U density in a procedure described in Ref. 7.
30.
M.
Barnes
,
A. J.
Merer
, and
G. F.
Metha
,
J. Chem. Phys.
103
,
8360
(
1995
).
31.
J. F.
Harrison
,
Chem. Rev.
100
,
679
(
2000
).
32.
K.
Aiuchi
and
K.
Shibuya
,
J. Mol. Spectrosc.
204
,
235
(
2000
).
33.
D.
Tzeli
and
A.
Mavridis
,
J. Phys. Chem. A
110
,
8952
(
2006
).
34.
L. A.
Kaledin
,
J. E.
McCord
, and
M. C.
Heaven
,
J. Mol. Spectrosc.
173
,
499
(
1995
).
35.
A. J.
Merer
,
Annu. Rev. Phys. Chem.
40
,
407
(
1989
).
36.
H.
Wu
and
L.-S.
Wang
,
J. Chem. Phys.
108
,
5310
(
1998
).
37.
E.
Miliordos
and
A.
Mavridis
,
J. Phys. Chem. A
111
,
1953
(
2007
).
38.
E. A.
Shenyavskaya
,
A. J.
Ross
,
A.
Tpouzkhanian
, and
G.
Wannous
,
J. Mol. Spectrosc.
162
,
327
(
1993
).
39.
D. L.
Hildenbrand
and
K. H.
Lau
,
J. Chem. Phys.
102
,
3771
(
1995
).
40.
O.
Launila
,
J. Mol. Spectrosc.
169
,
373
(
1995
).
41.
O.
Launila
and
B.
Simard
,
J. Mol. Spectrosc.
154
,
93
(
1992
).
42.
R. S.
Ram
,
P. F.
Bernath
, and
S. P.
Davis
,
J. Mol. Spectrosc.
179
,
282
(
1996
).
43.
S.
Kardahakis
,
C.
Koukounas
, and
A.
Mavridis
,
J. Chem. Phys.
122
,
054312
(
2005
).
44.
C.
Koukounas
,
S.
Kardahakis
, and
A.
Mavridis
,
J. Chem. Phys.
120
,
11500
(
2004
).
45.
C.
Koukounas
and
A.
Mavridis
,
J. Phys. Chem. A
112
,
11235
(
2008
)
46.
In practice, we choose a very small r that approaches but does not reach 0 by identifying the regime in which the curves become identical within a constant-U or GGA approach.

Supplementary Material

You do not currently have access to this content.