In benchmark-quality studies of non-covalent interactions, it is common to estimate interaction energies at the complete basis set (CBS) coupled-cluster through perturbative triples [CCSD(T)] level of theory by adding to CBS second-order perturbation theory (MP2) a “coupled-cluster correction,” δMP2CCSD(T), evaluated in a modest basis set. This work illustrates that commonly used basis sets such as 6-31G*(0.25) can yield large, even wrongly signed, errors for δMP2CCSD(T) that vary significantly by binding motif. Double-ζ basis sets show more reliable results when used with explicitly correlated methods to form a δMP2F12CCSD(T*)F12 correction, yielding a mean absolute deviation of 0.11 kcal mol−1 for the S22 test set. Examining the coupled-cluster correction for basis sets up to sextuple-ζ in quality reveals that δMP2CCSD(T) converges monotonically only beyond a turning point at triple-ζ or quadruple-ζ quality. In consequence, CBS extrapolation of δMP2CCSD(T) corrections before the turning point, generally CBS (aug-cc-pVDZ,aug-cc-pVTZ), are found to be unreliable and often inferior to aug-cc-pVTZ alone, especially for hydrogen-bonding systems. Using the findings of this paper, we revise some recent benchmarks for non-covalent interactions, namely the S22, NBC10, HBC6, and HSG test sets. The maximum differences in the revised benchmarks are 0.080, 0.060, 0.257, and 0.102 kcal mol−1, respectively.

1.
A. L. L.
East
and
W. D.
Allen
,
J. Chem. Phys.
99
,
4638
(
1993
).
2.
A. G.
Csaszar
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
9751
(
1998
).
3.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
4.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
(
2002
).
5.
P.
Jurečka
and
P.
Hobza
,
Chem. Phys. Lett.
365
,
89
(
2002
).
6.
P.
Hobza
and
J.
Šponer
,
J. Am. Chem. Soc.
124
,
11802
(
2002
).
7.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
110
,
10656
(
2006
).
8.
M.
Pitoňák
,
T.
Janowski
,
P.
Neogrády
,
P.
Pulay
, and
P.
Hobza
,
J. Chem. Theory Comput.
5
,
1761
(
2009
).
9.
P.
Jurecka
and
P.
Hobza
,
Chem. Phys. Lett.
365
,
89
(
2002
).
10.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Am. Chem. Soc.
124
,
104
(
2002
).
11.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
12.
J. C.
Faver
,
M. L.
Benson
,
X. A.
He
,
B. P.
Robers
,
B.
Wang
,
M. S.
Marshall
,
M. R.
Kennedy
,
C. D.
Sherrill
, and
K. M.
Merz
,
J. Chem. Theory Comput.
7
,
790
(
2011
).
13.
L. M. J.
Kroon-Batenburg
and
F. B. van
Duijneveldt
,
J. Mol. Struct.
22
,
185
(
1985
).
14.
P.
Hobza
,
A.
Mehlhorn
,
P.
Carsky
, and
R.
Zahradnik
,
J. Mol. Struct.
31
,
387
(
1986
).
15.
P.
Hobza
and
R.
Zahradnik
,
Chem. Rev.
88
,
871
(
1988
).
16.
P.
Hobza
,
J.
Sponer
, and
M.
Polasek
,
J. Am. Chem. Soc.
117
,
792
(
1995
).
17.
A. D.
Boese
,
J. M. L.
Martin
, and
W.
Klopper
,
J. Phys. Chem.
111
,
11122
(
2007
).
18.
S. K.
Min
,
E. C.
Lee
,
H. M.
Lee
,
D. Y.
Kim
,
D.
Kim
, and
K. S.
Kim
,
J. Comput. Chem.
29
,
1208
(
2007
).
19.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
108
,
10200
(
2004
).
20.
R.
Podeszwa
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Phys. Chem. A
110
,
10345
(
2006
).
21.
T.
Janowski
and
P.
Pulay
,
Chem. Phys. Lett.
447
,
27
(
2007
).
22.
M.
Pitoňák
,
P.
Neogrády
,
J.
Řezáč
,
P.
Jurečka
,
M.
Urban
, and
P.
Hobza
,
J. Chem. Theory Comput.
4
,
1829
(
2008
).
23.
J.
Gräfenstein
and
D.
Cremer
,
J. Chem. Phys.
130
,
124105
(
2009
).
24.
L.
Gráfová
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
6
,
2365
(
2010
).
25.
L. A.
Burns
,
Á.
Vázquez-Mayagoitia
,
B. G.
Sumpter
, and
C. D.
Sherrill
,
J. Chem. Phys.
134
,
084107
(
2011
).
26.
H.-J.
Werner
and
F. R.
Manby
,
J. Chem. Phys.
124
,
054114
(
2006
).
27.
F. R.
Manby
,
H.-J.
Werner
,
T. B.
Adler
, and
A. J.
May
,
J. Chem. Phys.
124
,
094103
(
2006
).
28.
H.-J.
Werner
,
J. Chem. Phys.
124
,
101103
(
2008
).
29.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
,
J. Chem. Phys.
126
,
164102
(
2007
).
30.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
31.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
32.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
33.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
34.
T.
Takatani
and
C. D.
Sherrill
,
Phys. Chem. Chem. Phys.
9
,
6106
(
2007
).
35.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Phys. Chem. A
113
,
878
(
2009
).
36.
K. S.
Thanthiriwatte
,
E. G.
Hohenstein
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
7
,
88
(
2011
).
37.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
38.
R.
Podeszwa
,
K.
Patkowski
, and
K.
Szalewicz
,
Phys. Chem. Chem. Phys.
12
,
5974
(
2010
).
39.
E. G.
Hohenstein
and
C. D.
Sherrill
, “
Wavefunction methods for noncovalent interactions
,”
WIREs Comput. Mol. Sci.
(in press).
40.
D. D.
Nelson
,
G. T.
Fraser
, and
W.
Klemperer
,
Science
238
,
1670
(
1987
).
41.
E.
Arunan
,
G. R.
Desiraju
,
R. A.
Klein
,
J.
Sadlej
,
S.
Scheiner
,
I.
Alkorta
,
D. C.
Clary
,
R. H.
Crabtree
,
J. J.
Dannenberg
,
P.
Hobza
,
H. G.
Kjaergaard
,
A. C.
Legon
,
B.
Mennucci
, and
D. J.
Nesbitt
,
Pure Appl. Chem.
83
,
1637
(
2011
).
42.
M.
Pitonak
,
P.
Neogrady
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
12
,
1369
(
2010
).
43.
P.
Jurečka
,
J.
Šponer
, and
P.
Hobza
,
J. Phys. Chem. B
108
,
5466
(
2004
).
44.
J.
Pittner
and
P.
Hobza
,
Chem. Phys. Lett.
390
,
496
(
2004
).
45.
I.
Dabkowska
,
H. V.
Gonzalez
,
P.
Jurecka
, and
P.
Hobza
,
J. Phys. Chem. A
109
,
1131
(
2005
).
46.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
6624
(
2005
).
47.
J.
Rejnek
and
P.
Hobza
,
J. Phys. Chem. B
111
,
641
(
2007
).
48.
L. R.
Rutledge
and
S. D.
Westmore
,
J. Chem. Theory Comput.
4
,
1768
(
2008
).
49.
L. R.
Rutledge
,
H. F.
Durst
, and
S. D.
Westmore
,
J. Chem. Theory Comput.
5
,
1400
(
2009
).
50.
O.
Marchetti
and
H.-J.
Werner
,
J. Phys. Chem. A
113
,
11580
(
2009
).
51.
See supplementary material at http://dx.doi.org/10.1063/1.3659142 for Figures S1–S2 showing the basis set convergence of counterpoise-corrected and uncorrected values of δMP2CCSD(T) for the ethene dimer and water dimer, respectively; for Table S1 containing a comparison of δMP2CCSD(T) corrections using various polarized double-ζ basis sets versus benchmark values; and for Tables S2–S9 detailing the reference energies of the NBC10A database. Text files with revised benchmark interaction energies for the S22B, NBC10A, HBC6A, and HSG-A databases are also available along with Cartesian coordinates for all test set members.
52.
B. W.
Hopkins
and
G. S.
Tschumper
,
J. Phys. Chem. A
108
,
2941
(
2004
).
53.
J.
Řezác
,
K. E.
Riley
, and
P.
Hobza
, “
Extensions of the S66 data set: More accurate interaction energies and angular-displaced nonequilibrium geometries
,”
J. Chem. Theory Comput.
(in press).
54.
J.
Řezác
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
55.
O.
Marchetti
and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
10
,
3400
(
2008
).

Supplementary Material

You do not currently have access to this content.