We consider statistical mechanical properties of the primitive chain network (PCN) model for entangled polymers from its dynamic equations. We show that the dynamic equation for the segment number of the PCN model does not reduce to the standard Langevin equation which satisfies the detailed balance condition. We propose heuristic modifications for the PCN dynamic equation for the segment number, to make it reduce to the standard Langevin equation. We analyse some equilibrium statistical properties of the modified PCN model, by using the effective free energy obtained from the modified PCN dynamic equations. The PCN effective free energy can be interpreted as the sum of the ideal Gaussian chain free energy and the repulsive interaction energy between slip-links. By using the single chain approximation, we calculate several distribution functions of the PCN model. The obtained distribution functions are qualitatively different from ones for the simple slip-link model without any direct interactions between slip-links.

1.
Y.
Masubuchi
,
J.
Takimoto
,
K.
Koyama
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
115
,
4387
(
2001
).
2.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Non-Newtonian Fluid Mech.
149
,
87
(
2008
).
3.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
Oxford
,
1986
).
4.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Rheol. Acta
46
,
297
(
2006
).
5.
Y.
Masubuchi
,
T.
Yaoita
,
Y.
Matsumiya
, and
H.
Watanabe
,
J. Chem. Phys.
134
,
194905
(
2011
).
6.
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Macromolecules
41
,
8275
(
2008
).
7.
R.
Everaers
,
S. K.
Sukumaran
,
G. S.
Grest
,
C.
Svaneborg
,
A.
Sivasubramanian
, and
K.
Kremer
,
Science
303
,
823
(
2004
).
8.
M.
Kröger
,
Comput. Phys. Commun.
168
,
209
(
2005
).
9.
C.
Tzoumanekas
and
D. N.
Theodorou
,
Macromolecules
39
,
4592
(
2006
).
10.
Y.
Masubuchi
,
T.
Uneyama
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
132
,
134902
(
2010
).
11.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II
(
Springer
,
Heidelberg
,
1991
).
12.
D. J.
Evans
and
G. P.
Morris
,
Statistical Mechanics of Nonequilibrium Liquids
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2008
).
13.
H.
Risken
,
The Fokker-Planck Equation
, 2nd ed. (
Springer
,
Berlin
,
1989
).
14.
D. M.
Nair
and
J. D.
Schieber
,
Macromolecules
39
,
3386
(
2006
).
15.
T.
Uneyama
,
Nihon Reoroji Gakkaishi
39
,
135
(
2011
).
16.
T.
Uneyama
and
K.
Horio
,
J. Polym. Sci., Part B: Polym. Phys.
49
,
966
(
2011
).
17.
T.
Yaoita
,
T.
Isaki
,
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
J. Chem. Phys.
128
,
154901
(
2008
).
18.
C. W.
Gardiner
,
Handbook of Stochastic Methods
, 3rd ed. (
Springer
,
Berlin
,
2004
).
20.
K.
Sekimoto
,
Stochastic Energetics
,
Lecture Notes in Physics
Vol. 799 (
Springer
,
Berlin
,
2010
).
21.
P.
Kindt
and
W. J.
Briels
,
J. Chem. Phys.
127
,
124901
(
2007
).
22.
A. N.
Beris
and
B. J.
Edwards
,
Thermodynamics of Flowing Systems
(
Oxford University Press
,
Oxford
,
1994
).
23.
H. C.
Öttinger
,
Phys. Rev. E
57
,
1416
(
1998
).
24.
J. D.
Schieber
,
J. Chem. Phys.
118
,
5162
(
2003
).
25.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, 10th ed., edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1972
).
26.
E. W.
Weisstein
, “Mittag-Leffler Function” From MathWorld – A Wolfram Web Resource; see http://mathworld.wolfram.com/Mittag-LefflerFunction.html.
27.
S.
Okuda
,
Y.
Inoue
,
Y.
Masubuchi
,
T.
Uneyama
, and
M.
Hojo
, “Soft-core interaction between entanglement segments for primitive chain network simulations,” Rheol. Acta (submitted).
29.
T.
Uneyama
,
J. Chem. Phys.
126
,
114902
(
2007
).
30.
31.
M.
Doi
and
J.
Takimoto
,
Philos. Trans. R. Soc. London, Ser. A
361
,
641
(
2003
).
You do not currently have access to this content.