Observation of a chemical transformation at the single-molecule level yields a detailed view of kinetic pathways contributing to the averaged results obtained in a bulk measurement. Studies of a fluorogenic reaction catalyzed by gold nanoparticles have revealed heterogeneous reaction dynamics for these catalysts. Measurements on single nanoparticles yield binary trajectories with stochastic transitions between a dark state in which no product molecules are adsorbed and a fluorescent state in which one product molecule is present. The mean dwell time in either state gives information corresponding to a bulk measurement. Quantifying fluctuations from mean kinetics requires identifying properties of the fluorescence trajectory that are selective in emphasizing certain dynamic processes according to their time scales. We propose the use of constrained mean dwell times, defined as the mean dwell time in a state with the constraint that the immediately preceding dwell time in the other state is, for example, less than a variable time. Calculations of constrained mean dwell times for a kinetic model with dynamic disorder demonstrate that these quantities reveal correlations among dynamic fluctuations at different active sites on a multisite catalyst. Constrained mean dwell times are determined from measurements of single nanoparticle catalysis. The results indicate that dynamical fluctuations at different active sites are correlated, and that especially rapid reaction events produce particularly slowly desorbing product molecules.

1.
H. P.
Lu
,
L.
Xun
, and
X. S.
Xie
,
Science
282
,
1877
(
1998
).
2.
L.
Edman
,
Z.
Foldes-Papp
,
S.
Wennmalm
, and
R.
Rigler
,
Chem. Phys.
247
,
11
(
1999
).
3.
L.
Edman
and
R.
Rigler
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
8266
(
2000
).
4.
S. L.
Yang
and
J. S.
Cao
,
J. Phys. Chem. B
105
,
6536
(
2001
).
5.
S. L.
Yang
and
J. S.
Cao
,
J. Chem. Phys.
117
,
10996
(
2002
).
6.
W.
Min
,
B. P.
English
,
G. B.
Luo
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Acc. Chem. Res.
38
,
923
(
2005
).
7.
S. C.
Kou
,
B. J.
Cherayil
,
W.
Min
,
B. P.
English
, and
X. S.
Xie
,
J. Phys. Chem. B
109
,
19068
(
2005
).
8.
B. P.
English
,
W.
Min
,
A. M.
van Oijen
,
K. T.
Lee
,
G. B.
Luo
,
H. Y.
Sun
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
,
Nat. Chem. Biol.
2
,
87
(
2006
).
9.
K.
Velonia
,
O.
Flomenbom
,
D.
Loos
,
S.
Masuo
,
M.
Cotlet
,
Y.
Engelborghs
,
J.
Hofkens
,
A. E.
Rowan
,
J.
Klafter
,
R. J. M.
Nolte
, and
F. C.
de Schryver
,
Angew. Chem. Int. Ed.
44
,
560
(
2005
).
10.
O.
Flomenbom
,
K.
Velonia
,
D.
Loos
,
S.
Masuo
,
M.
Cotlet
,
Y.
Engelborghs
,
J.
Hofkens
,
A. E.
Rowan
,
R. J. M.
Nolte
,
M.
Van der Auweraer
,
F. C.
de Schryver
, and
J.
Klafter
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
2368
(
2005
).
11.
O.
Flomenbom
,
J.
Klafter
, and
A.
Szabo
,
Biophys. J.
88
,
3780
(
2005
).
12.
O.
Flomenbom
and
J.
Klafter
,
J. Chem. Phys.
123
,
064903
(
2005
).
13.
O.
Flomenbom
and
R. J.
Silbey
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
10907
(
2006
).
14.
O.
Flomenbom
,
J.
Hofkens
,
K.
Velonia
,
F. C.
de Schryver
,
A. E.
Rowan
,
R. J. M.
Nolte
,
J.
Klafter
, and
R. J.
Silbey
,
Chem. Phys. Lett.
432
,
371
(
2006
).
15.
I. V.
Gopich
and
A.
Szabo
,
J. Chem. Phys.
124
,
154712
(
2006
).
16.
W.
Min
,
I. V.
Gopich
,
B. P.
English
,
S. C.
Kou
,
X. S.
Xie
, and
A.
Szabo
,
J. Phys. Chem. B
110
,
20093
(
2006
).
17.
G.
De Cremer
,
M. B. J.
Roeffaers
,
M.
Baruah
,
M.
Sliwa
,
B. F.
Sels
,
J.
Hofkens
, and
D. E.
De Vos
,
J. Am. Chem. Soc.
129
,
15458
(
2007
).
18.
J. A.
Hanson
,
K.
Duderstadt
,
L. P.
Watkins
,
S.
Bhattacharyya
,
J.
Brokaw
,
J. W.
Chu
, and
H.
Yang
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18055
(
2007
).
19.
B. C.
Li
,
H.
Yang
, and
T.
Komatsuzaki
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
536
(
2008
).
20.
Y. W.
Tan
and
H.
Yang
,
Phys. Chem. Chem. Phys.
13
,
1709
(
2011
).
21.
S.
Kuznetsova
,
G.
Zauner
,
T. J.
Aartsma
,
H.
Engelkamp
,
N.
Hatzakis
,
A. E.
Rowan
,
R. J. M.
Nolte
,
P. C. M.
Christianen
, and
G. W.
Canters
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
3250
(
2008
).
22.
J.
Cao
,
J. Phys. Chem. B
115
,
5493
(
2011
).
23.
W.
Xu
,
J. S.
Kong
,
Y.-T. E.
Yeh
, and
P.
Chen
,
Nature Mater.
7
,
992
(
2008
).
24.
W.
Xu
,
H.
Shen
,
G.
Liu
, and
P.
Chen
,
Nano Res.
2
,
911
(
2009
).
25.
W.
Xu
,
J. S.
Kong
, and
P.
Chen
,
Phys. Chem. Chem. Phys.
11
,
2767
(
2009
).
26.
W.
Xu
,
J. S.
Kong
, and
P.
Chen
,
J. Phys. Chem. C
113
,
2393
(
2009
).
27.
P.
Chen
,
W.
Xu
,
X.
Zhou
,
D.
Panda
, and
A.
Kalininskiy
,
Chem. Phys. Lett.
470
,
151
(
2009
).
28.
X.
Zhou
,
W.
Xu
,
G.
Liu
,
D.
Panda
, and
P.
Chen
,
J. Am. Chem. Soc.
132
,
138
(
2010
).
29.
P.
Chen
,
X.
Zhou
,
H.
Shen
,
N. M.
Andoy
,
E.
Choudhary
,
K.-S.
Han
,
G.
Liu
, and
W.
Meng
,
Chem. Soc. Rev.
39
,
4560
(
2010
).
30.
H. P.
Lerch
,
A. S.
Mikhailov
, and
B.
Hess
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
15410
(
2002
).
31.
Z.
Wu
,
V.
Elgart
,
H.
Qian
, and
J.
Xing
,
J. Phys. Chem. B
113
,
12375
(
2009
).
32.
R.
Imbihl
and
G.
Ertl
,
Chem. Rev.
95
,
697
(
1995
).
33.
G.
Ertl
,
Faraday Discuss.
121
,
1
(
2002
).
34.
G. A.
Somorjai
and
J. Y.
Park
,
Angew. Chem. Int. Ed.
47
,
9212
(
2008
).
35.
S.
Wunder
,
Y.
Lu
,
M.
Albrecht
, and
M.
Ballauff
,
ACS Catal.
1
,
908
(
2011
).
36.
M. O.
Vlad
and
J.
Ross
,
ChemPhysChem
5
,
1671
(
2004
).
37.
J. A.
Hanson
and
H.
Yang
,
J. Chem. Phys.
124
,
214101
(
2008
).
38.
H.
Yang
,
J. Chem. Phys.
129
,
074701
(
2008
).
39.
B. C.
Li
,
H.
Yang
, and
T.
Komatsuzaki
,
J. Phys. Chem. B
113
,
14732
(
2009
).
40.
41.
42.
S. L.
Yang
and
J.
Cao
,
J. Chem. Phys.
121
,
572
(
2004
).
43.
J. B.
Witkoskie
and
J. S.
Cao
,
J. Chem. Phys.
121
,
6361
(
2004
).
44.
J. B.
Witkoskie
and
J. S.
Cao
,
J. Chem. Phys.
121
,
6373
(
2004
).
45.
J.
Cao
,
J. Phys. Chem. B
110
,
19040
(
2006
).
46.
J. B.
Witkoskie
and
J.
Cao
,
J. Phys. Chem. B
110
,
19009
(
2006
).
47.
J. B.
Witkoskie
and
J.
Cao
,
J. Phys. Chem. B
112
,
5988
(
2008
).
48.
J.
Cao
and
R. J.
Silbey
,
J. Phys. Chem. B
112
,
12867
(
2008
).
49.
I. V.
Gopich
and
A.
Szabo
,
J. Chem. Phys.
118
,
454
(
2003
).
50.
M. O.
Vlad
,
F.
Moran
,
F. W.
Schneider
, and
J.
Ross
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12548
(
2002
).
51.
M. O.
Vlad
,
F.
Moran
, and
J.
Ross
,
Chem. Phys.
287
,
83
(
2003
).
52.
H.
Wang
and
H.
Qian
,
J. Math. Phys.
48
,
013303
(
2007
).
53.
Y.
Zheng
and
F. L. H.
Brown
,
Phys. Rev. Lett.
90
,
238305
(
2003
).
54.
Y.
Peng
,
Y.
Zheng
, and
F. L. H.
Brown
,
J. Chem. Phys.
126
,
104303
(
2007
).
55.
Y.
Peng
,
Y.
Zheng
, and
F. L. H.
Brown
,
J. Chem. Phys.
131
,
214107
(
2009
).
56.
Y.
He
and
E.
Barkai
,
J. Chem. Phys.
122
,
184703
(
2005
).
57.
D. S.
Talaga
,
J. Phys. Chem. A
110
,
9743
(
2006
).
58.
H.
Qian
and
L. M.
Bishop
,
Int. J. Mol. Sci.
11
,
3472
(
2010
).
59.
R.
Zwanzig
,
Acc. Chem. Res.
23
,
148
(
1990
).
60.
R.
Zwanzig
,
J. Chem. Phys.
97
,
3587
(
1992
).
61.
T.
Kuo
,
S.
Garcia-Manyes
,
J.
Li
,
I.
Barel
,
H.
Lu
,
B. J.
Berne
,
M.
Urbakh
,
J.
Klafter
, and
J. M.
Fernandez
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
11336
(
2010
).
62.
J. B.
Witkoskie
and
J. S.
Cao
,
J. Chem. Phys.
121
,
6361
(
2004
).
63.
B. C.
Stipe
,
M. A.
Rezaei
, and
W.
Ho
,
J. Chem. Phys.
107
,
6443
(
1997
).
You do not currently have access to this content.