We have investigated the slipped parallel and t-shaped structures of carbon dioxide dimer [(CO2)2] using both conventional and explicitly correlated coupled cluster methods, inclusive and exclusive of counterpoise (CP) correction. We have determined the geometry of both structures with conventional coupled cluster singles doubles and perturbative triples theory [CCSD(T)] and explicitly correlated cluster singles doubles and perturbative triples theory [CCSD(T)-F12b] at the complete basis set (CBS) limits using custom optimization routines. Consistent with previous investigations, we find that the slipped parallel structure corresponds to the global minimum and is 1.09 kJ mol−1 lower in energy. For a given cardinal number, the optimized geometries and interaction energies of (CO2)2 obtained with the explicitly correlated CCSD(T)-F12b method are closer to the CBS limit than the corresponding conventional CCSD(T) results. Furthermore, the magnitude of basis set superposition error (BSSE) in the CCSD(T)-F12b optimized geometries and interaction energies is appreciably smaller than the magnitude of BSSE in the conventional CCSD(T) results. We decompose the CCSD(T) and CCSD(T)-F12b interaction energies into the constituent HF or HF CABS, CCSD or CCSD-F12b, and (T) contributions. We find that the complementary auxiliary basis set (CABS) singles correction and the F12b approximation significantly reduce the magnitude of BSSE at the HF and CCSD levels of theory, respectively. For a given cardinal number, we find that non-CP corrected, unscaled triples CCSD(T)-F12b/VXZ-F12 interaction energies are in overall best agreement with the CBS limit.

1.
L.
Mannik
,
J. C.
Stryland
, and
H. J.
Welsh
,
Can. J. Chem.
49
,
3056
(
1971
).
2.
T. E.
Gough
,
R. E.
Miller
, and
G.
Scoles
,
J. Phys. Chem.
85
,
4041
(
1981
).
3.
M. A.
Walsh
,
T. H.
England
,
T. R.
Dyke
, and
B. J.
Howard
,
Chem. Phys. Lett.
142
,
265
(
1987
).
4.
K. W.
Jucks
,
Z. S.
Huang
,
D.
Dayton
,
R. E.
Miller
, and
W. F.
Lafferty
,
J. Chem. Phys.
86
,
4341
(
1987
).
5.
K. W.
Jucks
,
Z. S.
Huang
,
R. E.
Miller
,
G. T.
Fraser
,
A. S.
Pine
, and
W. F.
Lafferty
,
J. Chem. Phys.
88
,
2185
(
1988
).
6.
R.
Bukowski
,
J.
Sadlej
,
B.
Jeziorski
,
P.
Jankowski
,
K.
Szalewicz
,
S. A.
Kucharski
,
H. L.
Williams
, and
B. M.
Rice
,
J. Chem. Phys.
110
,
3785
(
1999
).
7.
Y.
Konno
and
T.
Ozaki
,
Chem. Phys. Lett.
394
,
198
(
2004
).
8.
J.
Fiser
,
T.
Boublik
, and
R.
Polak
,
Collect. Czech. Chem. Commun.
69
,
177
(
2004
).
9.
K. V.
Jovan Jose
and
S. R.
Gadre
,
J. Chem. Phys.
128
,
124310
(
2008
).
10.
J. A.
Gomez Castano
,
A.
Fantoni
, and
R. M.
Romano
,
J. Mol. Struct.
881
,
68
(
2008
).
11.
M.
Dehghany
,
A. R. W.
McKellar
,
M.
Afshari
, and
N.
Moazzen-Ahmadi
,
Mol. Phys.
108
,
2195
(
2010
).
12.
V.
Ramanathan
,
S. S.
Iremonger
,
G. K.H.
Shimizu
,
P. G.
Boyd
,
S.
Alavi
, and
T. K.
Woo
,
Science
330
,
650
(
2010
).
13.
H.
Kim
,
Y.
Kim
,
M.
Yoon
,
S.
Lim
,
S. M.
Park
,
G.
Seo
, and
K.
Kim
,
J. Am. Chem. Soc.
132
,
12200
(
2010
).
14.
W.
Kutzelnigg
,
Theor. Chim. Acta
68
,
445
(
1985
).
15.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
16.
17.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
123
,
074101
(
2005
).
18.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
125
,
094302
(
2006
).
19.
O.
Marchetti
and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
10
,
3400
(
2008
).
20.
O.
Marchetti
and
H.-J.
Werner
,
J. Phys. Chem. A
113
,
11580
(
2009
).
21.
J. R.
Lane
and
H. G.
Kjaergaard
,
J. Chem. Phys.
131
,
034307
(
2009
).
22.
K.
de Lange
and
J.
Lane
,
J. Chem. Phys.
134
,
034301
(
2011
).
23.
A. O.
Yazaydin
,
R. Q.
Snurr
,
T. H.
Park
,
K.
Koh
,
J.
Liu
,
M. D.
LeVan
,
A. I.
Benin
,
P.
Jakubczak
,
M.
Lanuza
,
D. B.
Galloway
,
J. J.
Low
, and
R. R.
Willis
,
J. Am. Chem. Soc.
131
,
18198
(
2009
).
24.
G.
Adler
,
T. B.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
25.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
M.
Schütz
, et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
26.
S.
Simon
,
M.
Duran
, and
J. J.
Dannenberg
,
J. Chem. Phys.
105
,
11024
(
1996
).
27.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
28.
R. A.
Kendall
,
T. H.
Dunning
 Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
29.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
128
,
084102
(
2008
).
30.
F. R.
Manby
,
J. Chem. Phys.
119
,
4607
(
2003
).
31.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
,
J. Chem. Phys.
126
,
164102
(
2007
).
32.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
33.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
34.
K. E.
Yousaf
and
K. A.
Peterson
,
J. Chem. Phys.
129
,
184108
(
2008
).
35.
K. E.
Yousaf
and
K. A.
Peterson
,
Chem. Phys. Lett.
476
,
303
(
2009
).
36.
S.
Ten-no
,
J. Chem. Phys.
121
,
117
(
2004
).
37.
S.
Kedzuch
,
M.
Milko
, and
J.
Noga
,
Int. J. Quant. Chem.
105
,
929
(
2005
).
38.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
39.
D.
Feller
,
K. A.
Peterson
, and
J. G.
Hill
,
J. Chem. Phys.
133
,
184102
(
2010
).
40.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2009
).
41.
D. W.
Schwenke
,
J. Chem. Phys.
122
,
014107
(
2005
).
42.
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
, plbibsc-cfour, coupled-cluster techniques for computational chemistry, a quantum-chemical program package, 2010, for the current version, see http://www.cfour.de.
43.
See supplementary material at http://dx.doi.org/10.1063/1.3653230 for CCSD(T)/aug-cc-pVTZ harmonic frequencies, CCSD(T)/aug-cc-pVTZ vibrationally averaged internuclear distances and the full optimized geometries obtained with conventional CCSD(T) and explicitly correlated CCSD(T)-F12b.
44.
S.
Bock
,
E.
Bich
, and
E.
Vogel
,
Chem. Phys.
257
,
147
(
2000
).
45.
A.
Johansson
,
P.
Kollman
, and
S.
Rothenberg
,
Theor. Chim. Acta
29
,
167
(
1973
).
46.
J. G.
Hill
,
S.
Mazumder
, and
K. A.
Peterson
,
J. Chem. Phys.
132
,
054108
(
2010
).
47.
E.
Papajak
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
10
(
2011
).

Supplementary Material

You do not currently have access to this content.