Autoionization of Rydberg states of HfF, prepared using the optical-optical double resonance technique, holds promise to create HfF+ in a particular Zeeman level of a rovibronic state for an electron electric dipole moment search. We characterize a vibronic band of Rydberg HfF at 54 cm−1 above the lowest ionization threshold and directly probe the state of the ions formed from this vibronic band by performing laser-induced fluorescence on the ions. The Rydberg HfF molecules show a propensity to decay into only a few ion rotational states of a given parity and are found to preserve their orientation qualitatively upon autoionization. We show empirically that we can create 30% of the total ion yield in a particular |J+, M+〉 state and present a simplified model describing autoionization from a given Rydberg state that assumes no angular dynamics.

1.
A. E.
Leanhardt
,
J. L.
Bohn
,
H.
Loh
,
P.
Maletinsky
,
E. R.
Meyer
,
L. C.
Sinclair
,
R. P.
Stutz
, and
E. A.
Cornell
, “
High-resolution spectroscopy on trapped molecular ions in rotating electric fields: A new approach for measuring the electron electric dipole moment
,”
J. Mol. Spectrosc.
(in press). Available online: doi:.
2.
E. R.
Meyer
,
J. L.
Bohn
, and
M. P.
Deskevich
,
Phys. Rev. A
73
,
062108
(
2006
).
3.
A. N.
Petrov
,
N. S.
Mosyagin
,
T. A.
Isaev
, and
A. V.
Titov
,
Phys. Rev. A
76
,
030501
(
2007
).
4.
A. N.
Petrov
,
N. S.
Mosyagin
, and
A. V.
Titov
,
Phys. Rev. A
79
,
012505
(
2009
).
5.
H.
Lefebvre-Brion
and
R. W.
Field
,
The Spectra and Dynamics of Diatomic Molecules
(
Elsevier Academic
,
San Diego, CA
,
2004
).
7.
C.
Jungen
and
O.
Atabek
,
J. Chem. Phys.
66
,
5584
(
1977
).
8.
M. J.
Seaton
,
Rep. Prog. Phys.
46
,
167
(
1983
).
9.
C. H.
Greene
and
C.
Jungen
,
Adv. At. Mol. Phys.
21
,
51
(
1985
).
10.
J. J.
Kay
,
S. L.
Coy
,
B. M.
Wong
,
C.
Jungen
, and
R. W.
Field
,
J. Chem. Phys.
134
,
114313
(
2011
).
11.
L. F.
Dimauro
and
T. A.
Miller
,
Chem. Phys. Lett.
138
,
175
(
1987
).
12.
A.
Fujii
,
T.
Ebata
, and
M.
Ito
,
J. Chem. Phys.
88
,
5307
(
1988
).
13.
A.
Fujii
,
T.
Ebata
, and
M.
Ito
,
Chem. Phys. Lett.
161
,
93
(
1989
).
14.
J.
Xie
and
R. N.
Zare
,
Chem. Phys. Lett.
159
,
399
(
1989
).
15.
E. D.
Poliakoff
,
J. L.
Dehmer
,
D.
Dill
,
A. C.
Parr
,
K. H.
Jackson
, and
R. N.
Zare
,
Phys. Rev. Lett.
46
,
907
(
1981
).
16.
T.
Nagata
,
A.
Nakajima
,
T.
Kondow
, and
K.
Kuchitsu
,
Chem. Lett.
16
,
1911
(
1987
).
17.
D. R.
Guyer
,
L.
Hüwel
, and
S. R.
Leone
,
J. Chem. Phys.
79
,
1259
(
1983
).
18.
J. W.
Keller
,
W. T.
Hill
 III
,
D. L.
Ederer
,
T. J.
Gil
, and
P. W.
Langhoff
,
J. Chem. Phys.
87
,
3299
(
1987
).
19.
E. D.
Poliakoff
,
J. L.
Dehmer
,
A. C.
Parr
, and
G. E.
Leroi
,
J. Chem. Phys.
86
,
2557
(
1987
).
20.
S.
Kakar
,
H. C.
Choi
, and
E. D.
Poliakoff
,
J. Chem. Phys.
97
,
6998
(
1992
).
21.
R.
Das
,
C. Y.
Wu
,
A. G.
Mihill
,
E. D.
Poliakoff
,
K. S.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
101
,
5402
(
1994
).
22.
E. D.
Poliakoff
,
H. C.
Choi
,
R. M.
Rao
,
A. G.
Mihill
,
S.
Kakar
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
103
,
1773
(
1995
).
23.
“[13.0]1(ν′ = 0)” refers to an excited state of vibrational quantum number ν′ = 0, total angular momentum projected on the body-fixed axis Ω = 1, and at 13,0xx cm−1 from the vibronic ground state of HfF+.
24.
K. C.
Cossel
,
L. C.
Sinclair
,
T.
Coffey
,
R. W.
Field
,
A.
Titov
,
A.
Petrov
,
E. A.
Cornell
, and
J.
Ye
, (unpublished).
25.
Similarly, “[31.5]1/2” refers to an excited state of Ω = 1/2, and at 31,5xx cm−1 from the vibronic ground state of HfF.
26.
H.
Loh
,
H.
Looser
,
R. P.
Stutz
,
T. S.
Yahn
,
R. W.
Field
, and
E. A.
Cornell
(unpublished).
27.
R.
Zhao
,
I. M.
Konen
, and
R. N.
Zare
,
J. Chem. Phys.
121
,
9938
(
2004
).
28.
V. S.
Petrović
and
R. W.
Field
,
J. Chem. Phys.
128
,
014301
(
2008
).
29.
B. J.
Barker
,
I. O.
Antonov
,
V. E.
Bondybey
, and
M. C.
Heaven
,
J. Chem. Phys.
134
,
201102
(
2011
).
30.
J. J.
Kay
,
D. S.
Byun
,
J. O.
Clevenger
,
X.
Jiang
,
V. S.
Petrović
,
R.
Seiler
,
J. R.
Barchi
,
A. J.
Merer
, and
R. W.
Field
,
Can. J. Chem.
82
,
791
(
2004
).
31.
The lowest and excited HfF ionization thresholds have been identified using pulsed field ionization–zero electron kinetic energy (PFI-ZEKE) photoelectron spectroscopy (Ref. 29).
32.
A. G.
Adam
,
W. S.
Hopkins
, and
D. W.
Tokaryk
,
J. Mol. Spectrosc.
225
,
1
(
2004
).
33.
A.
Hansson
and
J. K. G.
Watson
,
J. Mol. Spectrosc.
233
,
169
(
2005
).
34.
H.
Park
,
D. J.
Leahy
, and
R. N.
Zare
,
Phys. Rev. Lett.
76
,
1591
(
1996
).
35.
J.
Xie
and
R. N.
Zare
,
J. Chem. Phys.
93
,
3033
(
1990
).
36.
U.
Fano
and
J. H.
Macek
,
Rev. Mod. Phys.
45
,
553
(
1973
).
37.
J. J.
Kay
and
R. W.
Field
(unpublished).
You do not currently have access to this content.