We have performed large-scale simulations of UV absorption spectra of water clusters (monomer to octamer) using a combination of ab initio path-integral molecular dynamics with reflection principle. The aim of the present work is four-fold: (1) To explore the transition from isolated molecules to bulk water from the perspective of UV photoabsorption. (2) To investigate quantum nuclear and thermal effects on the shape of the water UV spectra. (3) To make an assessment of the density functional theory functionals to be used for water excited states. (4) To check the applicability of the QM/MM schemes for a description of the UV absorption. Within the path integral molecular dynamics (PIMD)/reflection principle approach both the thermal and quantum vibrational effects including anharmonicities are accounted for. We demonstrate that shape of the spectra is primarily controlled by the nuclear quantum effects. The excited states and transition characteristics of the water clusters were calculated with the time-dependent density functional theory and equation-of-motion coupled clusters singles and doubles methods. Based on our benchmark calculations considering the whole UV spectrum we argue that the BHandHLYP method performs best among the 6 functionals tested (B3LYP, BHandHLYP, BNL, CAM-B3LYP, LC-ωPBE, and M06HF). We observe a gradual blueshift of the maximum of the first absorption peak with the increasing cluster size. The UV absorption spectrum for the finite size clusters (i.e., the peak centers, peak widths, and photoabsorption cross section) essentially converges into the corresponding bulk water spectrum. The effect of distant molecules accounted for within the polarizable continuum model is shown to be almost negligible. Using the natural transition orbitals we demonstrate that the first absorption band is formed by localized excitations while the second band includes delocalized excited states. Consequently, the QM/MM electrostatic embedding scheme can only be used for the modeling of the low energy part of the spectrum.

1.
O.
Svoboda
,
M.
Ončák
, and
P.
Slavíček
,
J. Chem. Phys.
135
,
154302
(
2011
).
2.
P.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L. A.
Naslund
,
T. K.
Hirsch
,
L.
Ojamae
,
P.
Glatzel
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Science
304
,
995
(
2004
).
3.
S.
Merchant
,
J. K.
Shah
, and
D.
Asthagiri
,
J. Chem. Phys.
134
,
124514
(
2011
).
4.
A. K.
Soper
,
Pure Appl. Chem.
82
,
1855
(
2010
).
5.
J. D.
Smith
,
C. D.
Cappa
,
K. R.
Wilson
,
B. M.
Messer
,
R. C.
Cohen
, and
R. J.
Saykally
,
Science
306
,
851
(
2004
).
6.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
Science
315
,
1249
(
2007
).
7.
V.
Garbuio
,
M.
Cascella
, and
O.
Pulci
,
J. Phys.: Condens. Matter
21
,
033101
(
2009
).
8.
L.
Bernasconi
,
J. Chem. Phys.
132
,
184513
(
2010
)
9.
T. W.
Marin
,
K.
Takahashi
, and
D. M.
Bartels
,
J. Chem. Phys.
125
,
104314
(
2006
).
10.
B. C.
Garrett
,
D. A.
Dixon
,
D. M.
Camaioni
,
D. M.
Chipman
,
M. A.
Johnson
,
C. D.
Jonah
,
G. A.
Kimmel
,
J. H.
Miller
,
T. N.
Rescigno
,
P. J.
Rossky
,
S. S.
Xantheas
,
S. D.
Colson
,
A. H.
Laufer
,
D.
Ray
,
P. F.
Barbara
,
D. M.
Bartels
,
K. H.
Becker
,
H.
Bowen
,
S. E.
Bradforth
,
I.
Carmichael
,
J. V.
Coe
,
L. R.
Corrales
,
J. P.
Cowin
,
M.
Dupuis
,
K. B.
Eisenthal
,
J. A.
Franz
,
M. S.
Gutowski
,
K. D.
Jordan
,
B. D.
Kay
,
J. A.
LaVerne
,
S. V.
Lymar
,
T. E.
Madey
,
C. W.
McCurdy
,
D.
Meisel
,
S.
Mukamel
,
A. R.
Nilsson
,
T. M.
Orlando
,
N. G.
Petrik
,
S. M.
Pimblott
,
J. R.
Rustad
,
G. K.
Schenter
,
S. J.
Singer
,
A.
Tokmakoff
,
L. S.
Wang
,
C.
Wittig
, and
T. S.
Zwier
,
Chem. Rev.
105
,
355
(
2005
).
11.
A.
Hermann
,
W. G.
Schmidt
, and
P.
Schwerdtfeger
,
Phys. Rev. Lett.
100
,
207403
(
2008
).
12.
K.
Yuan
,
R. N.
Dixon
, and
X.
Yang
,
Acc. Chem. Res.
44
,
369
(
2011
).
13.
R.
Schinke
,
Photodissociation Dynamics – Spectroscopy and Fragmentation of Small Polyatomic Molecules
(
Cambridge University Press
,
Cambridge, England
,
1993
).
14.
O.
Christiansen
,
T. M.
Nymand
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
113
,
8101
(
2000
).
15.
R.
Onaka
and
T.
Takahash
,
J. Phys. Soc. Jpn.
24
,
548
(
1968
).
16.
R. E.
Verrall
and
W. A.
Senior
,
J. Chem. Phys.
50
,
2746
(
1969
).
17.
J. A.
Ghormley
and
C. J.
Hochande
,
J. Phys. Chem.
75
,
40
(
1971
).
18.
F.
Williams
,
S. P.
Varma
, and
S.
Hillenius
,
J. Chem. Phys.
64
,
1549
(
1976
).
19.
T. I.
Quickenden
and
J. A.
Irvin
,
J. Chem. Phys.
72
,
4416
(
1980
).
20.
A.
Bernas
,
C.
Ferradini
, and
J.-P.
Jay-Gerin
,
Chem. Phys.
222
,
151
(
1997
).
21.
A.
Ikehata
,
N.
Higashi
, and
Y.
Ozaki
,
J. Chem. Phys.
129
,
234510
(
2008
).
22.
R. A.
Crowell
and
D. M.
Bartels
,
J. Phys. Chem.
100
,
17940
(
1996
).
23.
M.
D’Abramo
,
A.
Di Nola
,
M.
Aschi
, and
A.
Amadeia
,
J. Chem. Phys.
128
,
021103
(
2008
).
24.
P. C.
do Couto
and
D. M.
Chipman
,
J. Chem. Phys.
132
,
244307
(
2010
).
25.
W. A.
Goddard
and
W. J.
Hunt
,
Chem. Phys. Lett.
24
,
464
(
1974
).
26.
S.
Klein
,
E.
Kochanski
,
A.
Strich
, and
A. J.
Sadlej
,
Theor. Chim. Acta
94
,
75
(
1996
).
27.
R. A.
Mata
,
H.
Stoll
, and
B. J. C.
Cabral
,
J. Chem. Theory Comput.
5
,
1829
(
2009
).
28.
P. C.
do Couto
, and
B. J. C.
Cabral
,
J. Chem. Phys.
126
,
014509
(
2007
).
29.
D. M.
Chipman
,
J. Chem. Phys.
122
,
044111
(
2005
).
30.
J. N.
Harvey
,
J. O.
Jung
, and
R. B.
Gerber
,
J. Chem. Phys.
109
,
8747
(
1998
).
31.
Y.
Miller
,
E.
Fredj
,
J. N.
Harvey
, and
R. B.
Gerber
,
J. Phys. Chem. A
108
,
4405
(
2004
).
32.
A. L.
Sobolewski
, and
W.
Domcke
,
J. Chem. Phys.
122
,
184320
(
2005
).
33.
B. D.
Bursulaya
,
J.
Jeon
,
C. N.
Yang
, and
H. J.
Kim
,
J. Phys. Chem. A
104
,
45
(
2000
).
34.
V.
Garbuio
,
M.
Cascella
,
L.
Reining
,
R.
Del Sole
, and
O.
Pulci
,
Phys. Rev. Lett.
97
,
137402
(
2006
).
35.
P. H.
Hahn
,
W. G.
Schmidt
,
K.
Seino
,
M.
Preuss
,
F.
Bechstedt
, and
J.
Bernholc
,
Phys. Rev. Lett.
94
,
037404
(
2005
).
36.
A.
Osted
,
J.
Kongsted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Phys. Chem. A
108
,
8646
(
2004
).
37.
M.
Aschi
,
M.
D’Abramo
,
C.
Di Teodoro
,
A.
Di Nola
, and
A.
Amadei
,
ChemPhysChem
6
,
53
(
2005
).
38.
D. M.
Chipman
,
J. Chem. Phys.
131
,
014103
(
2009
).
39.
V.
Poterya
,
M.
Fárník
,
M.
Ončák
, and
P.
Slavíček
,
Phys. Chem. Chem. Phys.
10
,
4835
(
2008
).
40.
S. Y.
Lee
,
R. C.
Brown
, and
E. J.
Heller
,
J. Phys. Chem.
87
,
2045
(
1983
).
41.
S. Y.
Lee
,
J. Chem. Phys.
82
,
4588
(
1985
).
42.
M. K.
Prakash
,
J. D.
Weibel
, and
R. A.
Marcus
,
J. Geophys. Res., [Atmos.]
110
,
D21315
(
2005
).
43.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1996
).
44.
M. E.
Tuckerman
, “
Path integration via molecular dynamics
,” in
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms,Lecture Notes
, edited by
J.
Grotendorst
,
D.
Marx
, and
A.
Muramatsu
(
John von Neumann Institute for Computing
,
Jülich
,
2002
), p.
269
.
45.
F. D.
Sala
,
R.
Rousseau
,
A.
Gorling
, and
D.
Marx
,
Phys. Rev. Lett.
92
,
183401
(
2004
).
46.
M.
Ončák
,
L.
Šištík
, and
P.
Slavíček
,
J. Chem. Phys.
133
,
174303
(
2010
).
47.
A.
Kaczmarek
,
M.
Shiga
, and
D.
Marx
,
J. Phys. Chem. A
113
,
1985
(
2009
).
48.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
49.
G. L.
Cui
and
W. T.
Yang
,
Mol. Phys.
108
,
2745
(
2010
).
50.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
51.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
52.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
13126
(
2006
).
53.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
54.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
234109
(
2006
).
55.
R.
Baer
and
D.
Neuhauser
,
Phys. Rev. Lett.
94
,
043002
(
2005
).
56.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito
,
2000
).
57.
M. M. L.
Grage
,
G.
Nyman
, and
M. S.
Johnson
,
Phys. Chem. Chem. Phys.
8
,
4798
(
2006
).
58.
S.
Barth
,
M.
Ončák
,
V.
Ulrich
,
M.
Mucke
,
T.
Lischke
,
P.
Slavíček
, and
U.
Hergenhahn
,
J. Phys. Chem. A
113
,
13519
(
2009
).
59.
S. Y.
Lee
,
J. Chem. Phys.
76
,
3064
(
1982
).
60.
TURBOMOLE V6.0 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, turbomole GmbH, since 2007; available from http://www.turbomole.com.
61.
B.
Santra
,
A.
Michaelides
, and
M.
Scheffler
,
J. Chem. Phys.
127
,
184104
(
2007
).
62.
B.
Santra
,
A.
Michaelides
,
M.
Fuchs
,
A.
Tkatchenko
,
C.
Filippi
, and
M.
Scheffler
,
J. Chem. Phys.
129
,
194111
(
2008
).
63.
S.
Thürmer
,
R.
Seidel
,
B.
Winter
,
M.
Ončák
, and
P.
Slavíček
,
J. Phys. Chem. A
115
,
6239
(
2011
).
64.
R. L.
Martin
,
J. Chem. Phys.
118
,
4775
(
2003
).
65.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
66.
C. J.
Cramer
,
Essentials of Computational Chemistry Theories and Models
(
Wiley
,
New York
,
2005
).
67.
G.
Scalmani
and
M. J.
Frisch
,
J. Chem. Phys.
132
,
114110
(
2010
).
68.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al.,
GAUSSIAN 09
,
Gaussian, Inc.
,
Wallingford, CT
(
2009
).
69.
M.
Cossi
and
V.
Barone
,
J. Phys. Chem. A
104
,
10614
(
2000
).
70.
Y. S.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Daschel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
So
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khaliullin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M.W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
71.
R.
Mota
,
R.
Parafita
,
A.
Giuliani
,
M. J.
Hubin-Franskin
,
J. M. C.
Lourenco
,
G.
Garcia
,
S. V.
Hoffmann
,
N. J.
Mason
,
P. A.
Ribeiro
,
M.
Raposo
, and
P.
Limao-Vieira
,
Chem. Phys. Lett.
416
,
152
(
2005
).
72.
P.
Slavíček
and
T. J.
Martínez
,
J. Chem. Phys.
124
,
84107
(
2006
).
73.
J. M.
Heller
,
R. N.
Hamm
,
R. D.
Birkhoff
, and
L. R.
Painter
,
J. Chem. Phys.
60
,
3483
(
1974
).
74.
K.
Kobayashi
,
J. Phys. Chem.
87
,
4317
(
1983
).
75.
M.
Kawasaki
,
A.
Sugita
,
C.
Ramos
,
Y.
Matsumi
, and
H.
Tachikawa
,
J. Phys. Chem. A
108
,
8119
(
2004
).
76.
See supplementary material at http://dx.doi.org/10.1063/1.3649942 for the random geometries of water clusters.

Supplementary Material

You do not currently have access to this content.