We present a theoretical model to describe binary mixtures of semi-flexible rods, applied here to fd-virus suspensions. We investigate the effects of rod stiffness on both monodisperse and binary systems, studying thick-thin and long-short mixtures. For monodisperse systems, we find that fd-virus particles have to be made extremely stiff to even approach the behavior of rigid rods. For thick-thin mixtures, we find increasingly rich phase behavior as the rods are either made more flexible or if their diameter ratio is increased. For long-short rod mixtures we find that the phase behavior is controlled by the relative stiffness of the rods, with increasing the stiffness of the long rods or decreasing that of the short rods resulting in richer phase behavior. We also calculate the state point dependent effective shape of the rods. The flexible rods studied here always behave as shorter, thicker rigid rods, but with an effective shape that varies widely throughout the phase diagrams, and plays a key role in determining phase behavior.

1.
2.
B. M.
Mulder
and
D.
Frenkel
,
Mol. Phys.
55
,
1193
(
1985
).
3.
A.
Samborski
and
G. T.
Evans
,
J. Chem. Phys.
93
,
4254
(
1990
).
4.
A.
Samborski
,
G. T.
Evans
,
C. P.
Mason
, and
M. P.
Allen
,
Mol. Phys.
81
,
263
(
1994
).
5.
P. D.
Duncan
,
M.
Dennison
,
A. J.
Masters
, and
M. R.
Wilson
,
Phys. Rev. E
79
,
031702
(
2009
).
6.
A. R.
Khokhlov
and
A. N.
Semenov
,
Physica A
108
,
546
(
1981
).
7.
A. R.
Khokhlov
and
A. N.
Semenov
,
Physica A
112
,
605
(
1982
).
8.
M.
Dijkstra
and
D.
Frenkel
,
Phys. Rev. E
51
,
5891
(
1995
).
9.
Z. Y.
Chen
,
Macromolecules
26
,
3419
(
1993
).
10.
G. T.
Evans
,
J. Chem. Phys
104
,
6654
(
1996
).
11.
T.
Odijk
,
Macromolecules
19
,
2313
(
1986
).
12.
P. P. F.
Wessels
and
B. M.
Mulder
,
Soft Mater.
1
,
313
(
2003
).
13.
P. P. F.
Wessels
and
B. M.
Mulder
,
J. Phys. Condens. Matter
18
,
9335
(
2006
).
14.
M.
Dennison
,
M.
Dijkstra
, and
R.
van Roij
,
Phys. Rev. Lett.
51
,
627
(
2011
).
15.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem.
97
,
3601
(
1993
).
16.
R.
van Roij
,
B.
Mulder
, and
M.
Dijkstra
,
Physica A
261
,
374
(
1998
).
17.
M.
Dijkstra
and
R.
van Roij
,
Phys. Rev. E
56
,
5594
(
1997
).
18.
H. N. W.
Lekkerkerker
,
P.
Coulon
,
R.
van der Haegen
, and
R.
Deblieck
,
J. Chem. Phys.
80
,
3427
(
1984
).
19.
T.
Odijk
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem.
89
,
2090
(
1985
).
20.
R.
van Roij
and
B.
Mulder
,
J. Chem. Phys.
105
,
11237
(
1996
).
21.
H. H.
Wensink
and
G. J.
Vroege
,
J. Phys.: Condens. Matter
16
,
S2015
(
2004
).
22.
P. A.
Buining
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem.
97
,
11510
(
1993
).
23.
T.
Sato
,
N.
Ikeda
,
T.
Itou
, and
A.
Teramoto
,
Polymer
30
,
311
(
1989
).
24.
K. R.
Purdy
,
S.
Varga
,
A.
Galindo
,
G.
Jackson
, and
S.
Fraden
,
Phys. Rev. Lett.
94
,
057801
(
2005
).
25.
J.
Tang
and
S.
Fraden
,
Liq. Cryst.
19
,
459
(
1995
).
26.
Z.
Dogic
and
S.
Fraden
,
Philos. Trans. R. Soc. London, Ser. A
359
,
997
(
2001
).
27.
28.
J. D.
Parsons
,
Phys. Rev. A
19
,
1225
(
1979
).
29.
S. D.
Lee
,
J. Chem. Phys.
87
,
4972
(
1987
).
30.
S.
Varga
,
K. R.
Purdy
,
A.
Galindo
,
S.
Fraden
, and
G.
Jackson
,
Phys. Rev. E
72
,
051704
(
2005
).
31.
H.
Fynewever
and
A.
Yethiraj
,
J. Chem. Phys.
108
,
1636
(
1998
).
32.
A. N.
Semenov
and
A. V.
Subbotin
,
Polym. Sci. USSR
31
,
2266
(
1989
).
33.
E.
Barry
,
D.
Beller
, and
Z.
Dogic
,
Soft Matter
5
,
2563
(
2009
).
34.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
,
Rep. Prog. Phys.
55
,
1241
(
1992
).
35.
36.
Z.
Dogic
, personal communication (1 March
2011
).
You do not currently have access to this content.