The chemical enhancement effects in surface-enhanced Raman scattering of p-aminothiophenol (PATP, it is also called p-mercaptoaniline or p-aminobenzenthiol) adsorbed on coinage metal surfaces with single thiol end or trapped into metal-molecule-metal junctions with both thiol and amino groups have been studied by density functional theory (DFT). We focus on the influence of photon-driven charge transfer (PDCT) and chemical bonding interaction (ground-state charge transfer) on the intensity enhancement and frequency shift in the surface Raman spectra of PATP. For comparison, the electronic structures and transitions of free PATP are studied first. The simulated pre-resonance UV Raman spectra illustrate that b2 modes can be selectively enhanced via vibronic coupling. The fundamentals of all the b2 modes in the frequency range of 1000 to 1650 cm−1 are assigned in detail. For PATP adsorbed on coinage metals, the time-dependent-DFT calculations indicate that the low-lying CT excited state arises from the π bonding orbital of molecule to the antibonding s orbital of metallic clusters. Our results further show that the PDCT resonance-like Raman scattering mechanism enhances the totally symmetric vibrational modes and the NH2 wagging vibration. Finally, the effect of chemical bonding interaction is also investigated. The amino group binding to metals gives a characteristic band of the NH2 wagging mode with the large blueshift frequency and an intense Raman signal.

1.
M.
Moskovits
,
Rev. Mod. Phys.
57
,
783
(
1985
).
2.
Z. Q.
Tian
,
B.
Ren
, and
D. Y.
Wu
,
J. Phys. Chem. B
106
,
9463
(
2002
).
3.
D. Y.
Wu
,
J. F.
Li
,
B.
Ren
, and
Z. Q.
Tian
,
Chem. Soc. Rev.
37
,
1025
(
2008
).
4.
S. M.
Nie
, and
S. R.
Emory
,
Science
275
,
1102
(
1997
).
5.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R.
Dasari
, and
M. S.
Feld
,
Phys. Rev. Lett.
78
,
1667
(
1997
).
6.
A.
Otto
,
I.
Mrozek
,
H.
Grabhorn
, and
W.
Akemann
,
J. Phys. Condens. Matter
4
,
1143
(
1992
).
7.
D. Y.
Wu
,
M.
Hayashi
,
C. H.
Chang
,
K. K.
Liang
, and
S. H.
Lin
,
J. Chem. Phys.
118
,
4073
(
2003
).
8.
D. Y.
Wu
,
B.
Ren
,
Y. X.
Jiang
,
X.
Xu
, and
Z. Q.
Tian
,
J. Phys. Chem. A
106
,
9042
(
2002
).
9.
L. L.
Zhao
,
L.
Jensen
, and
G. C.
Schatz
,
J. Am. Chem. Soc.
128
,
2911
(
2006
).
10.
B. N. J.
Persson
,
Chem. Phys. Lett.
82
,
561
(
1981
).
11.
H.
Ueba
,
Surf. Sci.
131
,
347
(
1983
).
12.
J. R.
Lombardi
,
R. L.
Birke
,
T.
Lu
, and
J.
Xu
,
J. Chem. Phys.
84
,
4174
(
1986
).
13.
J. F.
Arenas
,
I. López
Tocón
,
J. C.
Otero
, and
J. I.
Marcos
,
J. Phys. Chem.
100
,
9254
(
1996
).
14.
J. F.
Arenas
,
J.
Soto
,
I. L.
Tocon
,
D. J.
Fernandez
,
J. C.
Otero
, and
J. I.
Marcos
,
J. Chem. Phys.
116
,
7207
(
2002
).
15.
D. R.
Ward
,
N. J.
Halas
,
J. W.
Ciszek
,
J. M.
Tour
,
Y.
Wu
,
P.
Nordlander
, and
D.
Natelson
,
Nano Lett.
8
,
919
(
2008
).
16.
W.-H.
Park
and
Z. H.
Kim
,
Nano Lett.
10
,
4040
(
2010
).
17.
M.
Tsutsui
,
M.
Taniguchi
, and
T.
Kawai
,
J. Am. Chem. Soc.
131
,
10552
(
2009
).
18.
N. H.
Kim
,
S. J.
Lee
, and
M.
Moskovits
,
Nano Lett.
10
,
4181
(
2010
).
19.
W.
Hill
and
B.
Wehling
,
J. Phys. Chem.
97
,
9451
(
1993
).
20.
M.
Osawa
,
N.
Matsuda
,
K.
Yoshii
, and
I.
Uchida
,
J. Phys. Chem.
98
, 1
2702
(
1994
).
21.
S. J.
Oldenburg
,
S. L.
Westcott
,
R. D.
Averitt
, and
N. J.
Halas
,
J. Chem. Phys.
111
,
4729
(
1999
).
22.
J. B.
Jackson
and
N. J.
Halas
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
17930
(
2004
).
23.
Q.
Zhou
,
X.
Li
,
Q.
Fan
,
X.
Zhang
, and
J.
Zheng
,
Angew. Chem. Int. Ed.
45
,
3970
(
2006
).
24.
Y.
Wang
,
X.
Zou
,
W.
Ren
,
W.
Wang
, and
E.
Wang
,
J. Phys. Chem. C
111
,
3259
(
2007
).
25.
J. H.
Yoon
,
J. S.
Park
, and
S.
Yoon
,
Langmuir
25
, 1
2475
(
2009
).
26.
Y. F.
Huang
,
H. P.
Zhu
,
G. K.
Liu
,
D. Y.
Wu
,
B.
Ren
, and
Z. Q.
Tian
,
J. Am. Chem. Soc.
132
,
9244
(
2010
).
27.
K.
Uetsuki
,
P.
Verma
,
T.-A.
Yano
,
Y.
Saito
,
T.
Ichimura
, and
S.
Kawata
,
J. Phys. Chem. C
114
,
7515
(
2010
).
28.
A. P.
Richter
,
J. R.
Lombardi
, and
B.
Zhao
,
J. Phys. Chem. C
114
,
1610
(
2010
).
29.
K.
Kim
,
H. B.
Lee
,
J. K.
Yoon
,
D.
Shin
, and
K. S.
Shin
,
J. Phys. Chem. C
114
,
13589
(
2010
).
30.
D. P.
Fromm
,
A.
Sundaramurthy
,
A.
Kinkhabwala
,
P. J.
Schuck
,
G. S.
Kino
, and
W. E.
Moerner
,
J. Chem. Phys.
124
,
061101
(
2006
).
31.
K.
Kim
,
K. L.
Kim
,
H. B.
Lee
, and
K. S.
Shin
,
J. Phys. Chem. C
114
,
18679
(
2010
).
32.
J. R.
Lombardi
and
R. L.
Birke
,
J. Phys. Chem. C
112
,
5605
(
2008
).
33.
K.
Kim
,
D.
Shin
,
H. B.
Lee
, and
K. S.
Shin
,
Chem. Commun.
47
,
2020
(
2011
).
34.
N.-J.
Kim
,
J. Phys. Chem. C
114
,
13979
(
2010
).
35.
K.
Kim
,
Y. M.
Lee
,
H. B.
Lee
,
Y.
Park
,
T. Y.
Bae
,
Y. M.
Jung
,
C. H.
Choi
, and
K. S.
Shin
,
J. Raman Spectrosc.
41
,
187
(
2010
).
36.
J. W.
Gibson
and
B. R.
Johnson
,
J. Chem. Phys.
124
,
064701
(
2006
).
37.
M.
Sun
and
H.
Xu
,
ChemPhysChem
10
,
392
(
2009
).
38.
S.
Liu
,
X.
Zhao
,
Y.
Li
,
X.
Zhao
, and
M.
Chen
,
J. Chem. Phys.
130
,
234509
(
2009
).
39.
D. Y.
Wu
,
X. M.
Liu
,
Y. F.
Huang
,
B.
Ren
,
X.
Xu
, and
Z. Q.
Tian
,
J. Phys. Chem. C
113
,
18212
(
2009
).
40.
R. S.
Venkatachalam
,
F. J.
Boerio
, and
P. G.
Roth
,
J. Raman Spectrosc.
19
,
281
(
1988
).
41.
P. G.
Roth
,
R. S.
Venkatachalam
, and
F. J.
Boerio
,
J. Chem. Phys.
85
,
1150
(
1986
).
42.
X. M.
Yang
,
D. A.
Tryk
,
K.
Ajito
,
K.
Hashimoto
, and
A.
Fujishima
,
Langmuir
12
,
5525
(
1996
).
43.
X. M.
Yang
,
D. A.
Tryk
,
K.
Hashimoto
, and
A.
Fujishima
,
J. Raman Spectrosc.
29
,
725
(
1998
).
44.
X. M.
Yang
,
D. A.
Tryk
,
K.
Hashimoto
, and
A.
Fujishima
,
J. Phys. Chem. B
102
,
4933
(
1998
).
45.
W. H.
Tsai
,
F. J.
Boerio
,
S. J.
Clarson
, and
G.
Montaudo
,
J. Raman Spectrosc.
21
,
311
(
1990
).
46.
B.
Pergolese
,
M.
Muniz-Miranda
, and
A.
Bigotto
,
Chem. Phys. Lett.
438
,
290
(
2007
).
47.
M.
Muniz-Miranda
,
B.
Pergolese
, and
A.
Bigotto
,
J. Phys. Chem. C
112
,
6988
(
2008
).
48.
V.
Canpean
,
M.
Iosin
, and
S.
Astilean
,
Chem. Phys. Lett.
500
,
277
(
2010
).
49.
Y.
Fang
,
Y.
Li
,
H.
Xu
, and
M.
Sun
,
Langmuir
26
,
7737
(
2010
).
50.
Y.
Huang
,
Y.
Fang
,
Z.
Yang
, and
M.
Sun
,
J. Phys. Chem. C
114
,
18263
(
2010
).
51.
L.
Yang
,
L.
Ma
,
G.
Chen
,
J.
Liu
, and
Z.-Q.
Tian
,
Chem. -Eur. J.
16
,
12683
(
2010
).
52.
D.-Y.
Wu
,
L.-B.
Zhao
,
X.-M.
Liu
,
R.
Huang
,
Y.-F.
Huang
,
B.
Ren
, and
Z.-Q.
Tian
,
Chem. Commun.
47
,
2520
(
2011
).
53.
L.-B.
Zhao
,
R.
Huang
,
M.-X.
Bai
,
D.-Y.
Wu
, and
Z.-Q.
Tian
,
J. Phys. Chem. C
115
,
4174
(
2011
).
54.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
55.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
56.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
57.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
58.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
59.
W. R.
Wadt
and
P. J.
Hay
,
J. Chem. Phys.
82
,
284
(
1985
).
60.
M. J.
Frisch
, et al 
Gaussian 09, Revision A.02
,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
61.
P. M.
Kozlowski
,
T. S.
Rush
,
A. A.
Jarzecki
,
M. Z.
Zgierski
,
B.
Chase
,
C.
Piffat
,
B. H.
Ye
,
X. Y.
Li
,
P.
Pulay
, and
T. G.
Spiro
,
J. Phys. Chem. A
103
,
1357
(
1999
).
62.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
63.
P.
Pulay
,
J. Chem. Phys.
78
,
5043
(
1983
).
64.
C. E.
Dykstra
and
P. G.
Jasien
,
Chem. Phys. Lett.
109
,
388
(
1984
).
65.
L.
Doub
and
J. M.
Vandenbelt
,
J. Am. Chem. Soc.
69
,
2714
(
1947
).
66.
A. C.
Albrecht
,
J. Chem. Phys.
33
,
156
(
1960
).
67.
A. C.
Albrecht
,
J. Chem. Phys.
34
,
1476
(
1961
).
68.
B. S.
Galabov
and
T.
Dudev
,
Vibrational Intensities
(
Elsevier
,
Neth
,
1996
).
69.
J. R.
Lombardi
and
R. L.
Birke
,
Acc. Chem. Res.
42
,
734
(
2009
).
70.
Y.
Wang
,
H.
Chen
,
S.
Dong
, and
E.
Wang
,
J. Chem. Phys.
124
,
074709
(
2006
).
71.
K.
Kim
and
J. K.
Yoon
,
J. Phys. Chem. B
109
,
20731
(
2005
).
You do not currently have access to this content.