We have studied, via laser absorption spectroscopy, the velocity distribution of 7Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A76, 061401R (2007)] https://doi.org/10.1103/PhysRevA.76.061401. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11–13 K, while the velocity dispersion around this drift velocity is low, around 5–7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid.

1.
R.
Lambo
,
C. C.
Rodegheri
,
D. M.
Silveira
, and
C. L.
Cesar
,
Phys. Rev. A
76
,
061401
R
(
2007
).
2.
Y.-P.
Lee
,
Y.-J.
Wu
,
R. M.
Lees
,
L.-H.
Xu
, and
J. T.
Hougen
,
Science
311
,
365
(
2006
).
3.
M. E.
Fajardo
and
S.
Tam
,
J. Chem. Phys.
108
,
4237
(
1998
).
4.
F.
Bolduan
and
H. J.
Jodl
,
Chem. Phys. Lett.
85
,
283
(
2001
).
5.
M. G.
Kozlov
and
A.
Derevianko
,
Phys. Rev. Lett.
97
,
063001
(
2006
).
6.
F. X.
Campos
,
C. J.
Waltman
, and
S. R.
Leone
,
Chem. Phys. Lett.
201
,
399
(
1993
).
7.
G. B.
Andresen
,
M. D.
Ashkezari
,
M.
Baquero-Ruiz
,
W.
Bertsche
,
P. D.
Bowe
,
E.
Butler
,
C. L.
Cesar
,
S.
Chapman
,
M.
Charlton
,
A.
Deller
,
S.
Eriksson
,
J.
Fajans
,
T.
Friesen
,
M. C.
Fujiwara
,
D. R.
Gill
,
A.
Gutierrez
,
J. S.
Hangst
,
W. N.
Hardy
,
M. E.
Hayden
,
A. J.
Humphries
,
R.
Hydomako
,
M. J.
Jenkins
,
S.
Jonsell
,
L. V.
Jörgensen
,
L.
Kurchaninov
,
N.
Madsen
,
S.
Menary
,
P.
Nolan
,
K.
Olchanski
,
A.
Olin
,
A.
Povilus
,
P.
Pusa
,
F.
Robicheaux
,
E.
Sarid
,
S. Seif el
Nasr
,
D. M.
Silveira
,
C.
So
,
J. W.
Storey
,
R. I.
Thompson
,
D. P. van der
Werf
,
J. S.
Wurtele
, and
Y.
Yamazaki
,
Nature (London)
468
,
673
(
2010
).
8.
G. B.
Andresen
,
M. D.
Ashkezari
,
M.
Baquero-Ruiz
,
W.
Bertsche
,
P. D.
Bowe
,
E.
Butler
,
C. L.
Cesar
,
M.
Charlton
,
A.
Deller
,
S.
Eriksson
,
J.
Fajans
,
T.
Friesen
,
M. C.
Fujiwara
,
D. R.
Gill
,
A.
Gutierrez
,
J. S.
Hangst
,
W. N.
Hardy
,
R. S.
Hayano
,
M. E.
Hayden
,
A. J.
Humphries
,
R.
Hydomako
,
S.
Jonsell
,
S. L.
Kemp
,
L.
Kurchaninov
,
N.
Madsen
,
S.
Menary
,
P.
Nolan
,
K.
Olchanski
,
A.
Olin
,
P.
Pusa
,
C. Ø.
Rasmussen
,
F.
Robicheaux
,
E.
Sarid
,
D. M.
Silveira
,
C.
So
,
J. W.
Storey
,
R. I.
Thompson
,
D. P. van der
Werf
,
J. S.
Wurtele
, and
Y.
Yamazaki
,
Nature Phys.
7
,
578
(
2011
).
9.
T.
Hänsch
,
Rev. Mod. Phys.
78
,
1297
(
2006
).
10.
C. L.
Cesar
and
D.
Kleppner
,
Phys. Rev. A
59
,
4564
(
1999
).
11.
S. D.
Hogan
,
A. W.
Wiederkehr
,
H.
Schmutz
, and
F.
Merkt
,
Phys. Rev. Lett.
101
,
143001
(
2008
).
12.
D.
Kleppner
, private communication (
1999
).
13.
R.
Côté
,
M. J.
Jamieson
,
Z.-C.
Yan
,
N.
Geum
,
G.-H.
Jeung
, and
A.
Dalgarno
,
Phys. Rev. Lett.
84
,
2806
(
2000
).
14.
L.
Carr
,
D.
DeMille
,
R.
Krems
, and
J.
Ye
,
New J. Phys.
11
,
055049
(
2009
).
15.
M. E.
Fajardo
,
J. Chem. Phys.
98
,
110
(
1993
).
16.
Wolfram Research, Inc.
, Mathematica, Champaign, IL (
2005
).
17.
R. Q.
Fugate
and
C. A.
Swenson
,
J. Appl. Phys.
40
,
3034
(
1969
).
18.
M. L.
Klein
and
J. A.
Venables
,
Rare Gas Solids
(
Academic
,
New York
,
1977
).
19.
F.
Pobell
,
Matter and Methods at Low Temperatures
(
Springer
,
New York
,
1996
).
20.
G. L.
Pollack
,
Phys. Rev. A
2
,
38
(
1970
).
21.
J.
Walls
,
R.
Ashby
,
J. J.
Clarke
,
B.
Lu
, and
W. A.
van Wijngaarden
,
Eur. Phys. J. D
22
,
159
(
2003
).
22.
C. J.
Sansonetti
,
C. E.
Simien
,
J. D.
Gillaspy
,
J. N.
Tan
,
S. M.
Brewer
,
R. C.
Brown
,
S.
Wu
, and
J. V.
Porto
,
Phys. Rev. Lett.
107
,
023001
(
2011
).
23.
P.
Zhang
,
V.
Kharchenko
,
A.
Dalgarno
,
Y.
Matsumi
,
T.
Nakayama
, and
K.
Takahashi
,
Phys. Rev. Lett.
100
,
103001
(
2008
).
24.
S.
Cheng
,
J. B.
Lechman
,
S. J.
Plimpton
, and
G. S.
Grest
,
J. Chem. Phys.
134
,
224704
(
2011
).
25.
S.
Bovino
,
P.
Zhang
,
V.
Kharchenko
, and
A.
Dalgarno
,
J. Chem. Phys.
131
,
054302
(
2009
).
You do not currently have access to this content.