A simple and easily implemented Monte Carlo algorithm is described which enables configurational-bias sampling of molecules containing branch points and rings with endocyclic and exocyclic atoms. The method overcomes well-known problems associated with sequential configurational-bias sampling methods. A “reservoir” or “library” of fragments are generated with known probability distributions dependent on stiff intramolecular degrees of freedom. Configurational-bias moves assemble the fragments into whole molecules using the energy associated with the remaining degrees of freedom. The methods for generating the fragments are validated on models of propane, isobutane, neopentane, cyclohexane, and methylcyclohexane. It is shown how the sampling method is implemented in the Gibbs ensemble, and validation studies are performed in which the liquid coexistence curves of propane, isobutane, and 2,2-dimethylhexane are computed and shown to agree with accepted values. The method is general and can be used to sample conformational space for molecules of arbitrary complexity in both open and closed statistical mechanical ensembles.

1.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
2.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
3.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
4.
J. I.
Siepmann
and
D.
Frenkel
,
Mol. Phys.
75
,
59
(
1992
).
5.
G. C. A. M.
Mooij
,
D.
Frenkel
, and
B.
Smit
,
J. Phys. Condens. Matter
4
,
L255
(
1992
).
6.
J. J.
de Pablo
,
M.
Laso
, and
U. W.
Suter
,
J. Chem. Phys.
96
,
2395
(
1992
).
7.
J. J.
de Pablo
,
M.
Laso
, and
U. W.
Suter
,
J. Chem. Phys.
96
,
6157
(
1992
).
8.
P. V. K.
Pant
and
D. N.
Theodorou
,
Macromolecules
28
,
7224
(
1995
).
9.
M. W.
Deem
and
J. S.
Bader
,
Mol. Phys.
87
,
1245
(
1996
).
10.
M. G.
Wu
and
M. W.
Deem
,
Mol. Phys.
97
,
559
(
1999
).
11.
M. G.
Wu
and
M. W.
Deem
,
J. Chem. Phys.
111
,
6625
(
1999
).
12.
T. J. H.
Vlugt
,
R.
Krishna
, and
B.
Smit
,
J. Phys. Chem. B
103
,
1102
(
1999
).
13.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
103
,
4508
(
1999
).
14.
M. D.
Macedonia
and
E. J.
Maginn
,
Mol. Phys.
96
,
1375
(
1999
).
15.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
111
,
9731
(
1999
).
16.
B.
Chen
,
M. G.
Martin
, and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2578
(
1998
).
17.
A.
Baumgärtner
and
K.
Binder
,
J. Chem. Phys.
71
,
2541
(
1979
).
18.
A. J.
Pertsin
,
J.
Hahn
, and
H. P.
Grossmann
,
J. Comput. Chem.
15
,
1121
(
1994
).
19.
B.
Neubauer
,
A.
Boutin
,
B.
Tavitian
, and
A. H.
Fuchs
,
Mol. Phys.
97
,
769
(
1999
).
20.
E.
Bourasseau
,
P.
Ungerer
, and
A.
Boutin
,
J. Phys. Chem. B
106
,
5483
(
2002
).
21.
C. D.
Wick
and
J. I.
Siepmann
,
Macromolecules
33
,
7207
(
2000
).
22.
Z.
Chen
and
F. A.
Escobedo
,
J. Chem. Phys.
113
,
11382
(
2000
).
23.
H.
Sklenar
,
D.
Wüstner
, and
R.
Rohs
,
J. Comput. Chem.
27
,
309
(
2006
).
24.
S. K.
Nath
and
R.
Khare
,
J. Chem. Phys.
115
,
10837
(
2001
).
25.
M. L.
Greenfield
, Ph.D. dissertation (
University of California
,
1996
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.3644939 for details of an alternative algorithm that attempts to perturb Cartesian coordinates of sites in a fragment; numerical results.
27.
L. G.
Peristeras
,
I. G.
Economou
, and
D. N.
Theodorou
,
Macromolecules
38
,
386
(
2005
).
28.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2569
(
1998
).
29.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford University Press
,
Oxford
,
1989
).
30.
N. D.
Zhuravlev
,
M. G.
Martin
, and
J. I.
Siepmann
,
Fluid Phase Equilib.
202
,
307
(
2002
).
31.
J.-S.
Lee
,
C. D.
Wick
,
J. M.
Stubbs
, and
J. I.
Siepmann
,
Mol. Phys.
103
,
99
(
2005
).
32.
W.
Shi
and
E. J.
Maginn
,
J. Comput. Chem.
29
,
2520
(
2008
).

Supplementary Material

You do not currently have access to this content.