A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the parametrization procedure – making a direct link to the correlated wavefunction theory. The model has been trained for 15 elements (H, Li–F, Na–Cl, 720 parameters) on a set of 5581 molecules (including ions, transition states, and weakly bound complexes) whose first- and second-order properties were computed by the coupled-cluster theory as a reference, and a good agreement is seen. The model looks promising for the study of large molecular systems, it is believed to be an important step forward from the traditional semiempirical models towards higher accuracy at nearly as low a computational cost.

1.
S.
Lifson
and
A.
Warshel
,
J. Chem. Phys.
49
,
5116
(
1968
).
2.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
3.
A.
Warshel
and
R. M.
Weiss
,
J. Am. Chem. Soc.
102
,
6218
(
1980
).
4.
D. W.
Brenner
,
Phys. Rev. B
42
,
9458
(
1990
).
5.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
 III
,
J. Phys. Chem. A
105
,
9396
(
2001
).
6.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
7.
R.
Hoffmann
,
J. Chem. Phys.
39
,
1397
(
1963
).
8.
X.-P.
Li
,
R. W.
Nunes
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10891
(
1993
).
9.
A. H. R.
Palser
and
D. E.
Manolopoulos
,
Phys. Rev. B
58
,
12704
(
1998
).
10.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
11.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
12.
J.
Paldus
,
J.
Čížek
, and
I.
Shavitt
,
Phys. Rev. A
5
,
50
(
1972
).
13.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
14.
K.
Ragavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
15.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
17.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
18.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
19.
B. I.
Lundqvist
,
Y.
Andersson
,
H.
Shao
,
S.
Chan
, and
D. C.
Langreth
,
Int. J. Quantum Chem.
56
,
247
(
1995
).
20.
Y.
Andersson
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
76
,
102
(
1996
).
21.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
22.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
4993
(
1979
).
23.
D. N.
Laikov
,
Chem. Phys. Lett.
281
,
151
(
1997
).
24.
R. A.
Friesner
,
J. Phys. Chem.
92
,
3091
(
1988
).
25.
R. B.
Murphy
,
Y.
Cao
,
M. D.
Beachy
,
M. N.
Ringnalda
, and
R. A.
Friesner
,
J. Chem. Phys.
112
,
10131
(
2000
).
26.
E.
Rudberg
,
E. H.
Rubensson
, and
P.
Sałek
,
J. Chem. Phys.
128
,
184106
(
2008
).
27.
A. D.
Becke
,
J. Chem. Phys.
107
,
8554
(
1997
).
28.
D. N.
Laikov
,
Int. J. Quantum Chem.
111
,
2851
(
2011
).
29.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
30.
K. F.
Freed
,
Chem. Phys. Lett.
13
,
181
(
1972
).
31.
S.
Iwata
and
K. F.
Freed
,
J. Chem. Phys.
65
,
1071
(
1976
).
32.
K. F.
Freed
,
Acc. Chem. Res.
16
,
137
(
1983
).
33.
C. H.
Martin
and
K. F.
Freed
,
J. Chem. Phys.
105
,
1437
(
1996
).
34.
J. A.
Pople
,
D. P.
Santry
, and
G. A.
Segal
,
J. Chem. Phys.
43
,
S129
(
1963
).
36.
M. J. S.
Dewar
and
W.
Thiel
,
J. Am. Chem. Soc.
99
,
4899
(
1977
).
37.
D. N.
Nanda
and
K.
Jug
,
Theor. Chim. Acta
57
,
95
(
1980
).
38.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
39.
J. J. P.
Stewart
,
J. Comput. Chem.
10
,
209
(
1989
).
40.
M. Y.
Filatov
,
O. V.
Gritsenko
, and
G. M.
Zhidomirov
,
Theor. Chim. Acta
72
,
211
(
1987
).
41.
J. J. P.
Stewart
,
J. Mol. Model.
13
,
1173
(
2007
).
42.
M.
Kolb
and
W.
Thiel
,
J. Comput. Chem.
14
,
775
(
1993
).
43.
W.
Weber
and
W.
Thiel
,
Theor. Chem. Acc.
103
,
495
(
2000
).
44.
J. P.
McNamara
and
I. H.
Hillier
,
Phys. Chem. Chem. Phys.
9
,
2362
(
2007
).
45.
T.
Tuttle
and
W.
Thiel
,
Phys. Chem. Chem. Phys.
10
,
2159
(
2008
).
46.
R.
Ahlrichs
,
R.
Penco
, and
G.
Scoles
,
Chem. Phys.
19
,
119
(
1977
).
47.
J.
Řezáč
,
J.
Fanfrlík
,
D.
Salahub
, and
P.
Hobza
,
J. Chem. Theory Comput.
5
,
1749
(
2009
).
48.
M.
Korth
,
J. Chem. Theory Comput.
6
,
3808
(
2010
).
49.
C. H.
Rhee
,
R. M.
Metzger
, and
F. M.
Wiygul
,
J. Chem. Phys.
77
,
899
(
1982
).
50.
T. J.
Giese
and
D. M.
York
,
J. Chem. Phys.
123
,
164108
(
2005
).
51.
D. T.
Chang
,
G. K.
Schenter
, and
B. C.
Garrett
,
J. Chem. Phys.
128
,
164111
(
2008
).
52.
W.
Liang
, and
M.
Head-Gordon
,
J. Phys. Chem. A
108
,
3206
(
2004
).
53.
R. P.
Steele
and
M.
Head-Gordon
,
Mol. Phys.
105
,
2455
(
2007
).
54.
J.
Deng
,
A. T.B.
Gilbert
, and
P. M.W.
Gill
,
J. Chem. Phys.
130
,
231101
(
2009
).
55.
V. I.
Lebedev
,
Zh. Vychisl. Mat. Mat. Fiz.
16
,
293
(
1976
).
56.
V. I.
Lebedev
and
D. N.
Laikov
,
Russ. Acad. Sci. Dokl. Math.
59
,
477
(
1999
).
57.
D. N.
Laikov
,
Chem. Phys. Lett.
416
,
116
(
2005
).
58.
See supplementary material at http://dx.doi.org/10.1063/1.3646498 for reference molecular data, parametrization control settings, optimized parameters, error analysis, as well as the program binary and examples of molecular calculations.
60.
A. D.
Daniels
,
J. M.
Millam
, and
G. E.
Scuseria
,
J. Chem. Phys.
107
,
425
(
1997
).
61.
N. A.
Anikin
,
V. M.
Anisimov
,
V. L.
Bugaenko
,
V. V.
Bobrikov
, and
A. M.
Andreyev
,
J. Chem. Phys.
121
,
1266
(
2004
).
62.
T.-S.
Lee
,
D. M.
York
, and
W.
Yang
,
J. Chem. Phys.
105
,
2744
(
1996
).
63.
S. L.
Dixon
and
K. M.
Merz
 Jr.
,
J. Chem. Phys.
104
,
6643
(
1996
).
64.
A. D.
Daniels
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
1321
(
1999
).

Supplementary Material

You do not currently have access to this content.