A time-dependent wavepacket diffusion method is proposed to deal with charge transport in organic crystals. The electron-phonon interactions in both site energies and electronic couplings are incorporated by the time-dependent fluctuations which are generated from the corresponding spectral density functions. The numerical demonstrations reveal that the present approach predicts the consistent charge carrier dynamics with the rigorous quantum approaches. In addition, the diffusion coefficients obtained from the Marcus formula are well reproduced at the weak electronic coupling and high temperature limits. It is also found that the charge mobility feature of the crossover from the band-like to the hopping-type cannot be predicted from the fluctuations induced by the linear electron-phonon interactions with an Ohmic spectral density; however, it indeed appears as the electronic coupling fluctuation exponentially depends on the nuclear coordinates. Finally, it should be noted that although the present approach neglects the imaginary fluctuation, it essentially incorporates the coherent motion of the charge carrier and quantum effect of the phonon motion with a broad regime of the fluctuations for symmetric systems. Besides, the approach can easily be applied to systems having thousands of sites, which allows one to investigate charge transport in nanoscale organic crystals.

1.
W.
Warta
and
N.
Karl
,
Phys. Rev. B
32
,
1172
(
1985
).
2.
O.
Ostroverkhova
,
D. G.
Cooke
,
S.
Shcherbyna
,
R. F.
Egerton
,
F. A.
Hegmann
,
R. R.
Tykwinski
, and
J. E.
Anthony
,
Phys. Rev. B
71
,
035204
(
2005
).
3.
S.
Wang
,
P.-J.
Chia
,
L.-L.
Chua
,
L.-H.
Zhao
,
R.-Q.
Png
,
S.
Sivaramakrishnan
,
M.
Zhou
,
R. G.-S.
Goh
,
R. H.
Friend
,
A. T.-S.
Wee
, and
P. K.-H.
Ho
,
Adv. Mater.
20
,
3440
(
2008
).
4.
A.
Troisi
,
Chem. Soc. Rev.
40
,
2347
(
2011
).
5.
R. A.
Marcus
,
J. Chem. Phys.
24
,
979
(
1956
).
6.
T.
Holstein
,
Ann. Phys. (N.Y.)
8
,
343
(
1959
).
7.
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
8.
R.
Coehoorn
,
W. F.
Pasveer
,
P. A.
Bobbert
, and
M. A.J.
Michels
,
Phys. Rev. B
72
,
155206
(
2005
).
9.
L.
Wang
,
G.
Nan
,
X.
Yang
,
Q.
Peng
,
Q.
Li
, and
Z.
Shuai
,
Chem. Soc. Rev.
39
,
423
(
2010
).
10.
N.
Karl
,
Synth. Met.
133-134
,
649
(
2003
).
11.
V.
Podzorov
,
E.
Menard
,
A.
Borissov
,
V.
Kiryukhin
,
J. A.
Rogers
, and
M. E.
Gershenson
,
Phys. Rev. Lett.
93
,
086602
(
2004
).
12.
O. D.
Jurchescu
,
J.
Baas
, and
T. T. M.
Palstra
,
Appl. Phys. Lett.
84
,
3061
(
2004
).
13.
Y. C.
Cheng
,
R. J.
Silbey
,
D. A. da Silva
Filho
,
J. P.
Calbert
,
J.
Cornil
, and
J. L.
Brédas
,
J. Chem. Phys.
118
,
3764
(
2003
).
14.
G.
Nan
,
X.
Yang
,
L.
Wang
,
Z.
Shuai
, and
Y.
Zhao
,
Phys. Rev. B
79
,
115203
(
2009
).
15.
W.
Zhang
,
W.
Liang
, and
Y.
Zhao
,
J. Chem. Phys.
133
,
024501
(
2010
).
16.
R.
Silbey
and
R. W.
Munn
,
J. Chem. Phys.
72
,
2763
(
1980
).
17.
R. W.
Munn
and
R.
Silbey
,
J. Chem. Phys.
83
,
1854
(
1985
).
18.
V. M.
Kenkre
,
J. D.
Andersen
,
D. H.
Dunlap
, and
C. B.
Duke
,
Phys. Rev. Lett.
62
,
1165
(
1989
).
19.
V.
Coropceanu
,
J.
Cornil
,
D. A. da Silva
Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
,
Chem. Rev.
107
,
926
(
2007
).
20.
D. L.
Cheung
and
A.
Troisi
,
Phys. Chem. Chem. Phys.
10
,
5941
(
2008
).
21.
K.
Hannewald
and
P. A.
Bobbert
,
Appl. Phys. Lett.
85
,
1535
(
2004
).
22.
K.
Hannewald
,
V. M.
Stojanović
,
J. M. T.
Schellekens
,
P. A.
Bobbert
,
G.
Kresse
, and
J.
Hafner
,
Phys. Rev. B
69
,
075211
(
2004
).
23.
A.
Troisi
and
G.
Orlandi
,
J. Phys. Chem. A
110
,
4065
(
2006
).
24.
A.
Troisi
,
D. L.
Cheung
, and
D.
Andrienko
,
Phys. Rev. Lett.
102
,
116602
(
2009
).
25.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
26.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
27.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
28.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
131
,
225101
(
2009
).
29.
D.
Wang
,
L.
Chen
,
R.
Zheng
,
L.
Wang
, and
Q.
Shi
,
J. Chem. Phys.
132
,
081101
(
2010
).
30.
I.
Kondov
,
M.
Thoss
, and
H.
Wang
,
J. Phys. Chem. A
110
,
1364
(
2006
).
31.
I.
Kondov
,
M.
Čížek
,
C.
Benesch
,
H.
Wang
, and
M.
Thoss
,
J. Phys. Chem. C
111
,
11970
(
2007
).
32.
J.
Li
,
I.
Kondov
,
H.
Wang
, and
M.
Thoss
,
J. Phys. Chem. C
114
,
18481
(
2010
).
33.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
34.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
35.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
36.
Y.
Zhao
,
J. Theor. Comput. Chem.
7
,
869
(
2008
).
37.
X.
Chu
and
Y.
Zhao
,
J. Theor. Comput. Chem.
8
,
1295
(
2009
).
38.
P. W.
Anderson
and
P. R.
Weiss
,
Rev. Mod. Phys.
25
,
269
(
1953
).
39.
R.
Kubo
,
J. Phys. Soc. Jpn.
9
,
935
(
1954
).
40.
A. I.
Burshtein
,
Zh. Eksp. Teor. Fiz.
49
,
1362
(
1965
).
41.
H.
Haken
and
P.
Reineker
,
Z. Phys.
249
,
253
(
1972
).
42.
H.
Haken
and
G.
Strobl
,
Z. Phys.
262
,
135
(
1973
).
43.
I.
Goychuk
and
P.
Hänggi
,
Adv. Phys.
54
,
525
(
2005
).
44.
R.
Kubo
,
J. Math. Phys.
4
,
174
(
1963
).
45.
A.
Blumen
,
S. H.
Lin
, and
J.
Manz
,
J. Chem. Phys.
69
,
881
(
1978
).
46.
R. F.
Fox
,
Phys. Rep.
48
,
179
(
1978
).
47.
S.
Mukamel
,
I.
Oppenheim
, and
J.
Ross
,
Phys. Rev. A
17
,
1988
(
1978
).
48.
K.
Lindenberg
and
B. J.
West
, in
The Nonequilibrium Statistical Mechanics of Open and Closed Systems
(
VCH
,
New York
,
1990
).
49.
A. A.
Ovchinnikov
and
N. S.
Érikhman
,
Zh. Eksp. Teor. Fiz.
67
,
1474
(
1974
).
50.
J.
Shao
and
P.
Hänggi
,
Phys. Rev. A
56
,
R4397
(
1997
).
51.
Y. C.
Cheng
and
R. J.
Silbey
,
Phys. Rev. A
69
,
052325
(
2004
).
52.
X.
Chen
and
R. J.
Silbey
,
J. Chem. Phys.
132
,
204503
(
2010
).
53.
P.
Reineker
,
V. M.
Kenkre
, and
R.
Kühne
,
Phys. Lett. A
84
,
294
(
1981
).
54.
V. M.
Kenkre
and
P.
Reineker
, in
Exciton Dynamics in Molecular Crystals and Aggregates
(
Springer-Verlag
,
Berlin
,
1982
).
55.
K.
Kitahara
and
J. W.
Haus
,
Z. Phys. B
32
,
419
(
1979
).
56.
B.
Jackson
and
R.
Silbey
,
J. Chem. Phys.
75
,
3293
(
1981
).
57.
M. A.
Palenberg
,
R. J.
Silbey
,
M.
Malagoli
, and
J.-L.
Brédas
,
J. Chem. Phys.
112
,
1541
(
2000
).
58.
W.
Pfluegl
,
M. A.
Palenberg
, and
R. J.
Silbey
,
J. Chem. Phys.
113
,
5632
(
2000
).
59.
D.
Antoniou
and
S. D.
Schwartz
,
J. Chem. Phys.
110
,
465
(
1999
).
60.
A.
Damjanović
,
I.
Kosztin
,
U.
Kleinekathöfer
, and
K.
Schulten
,
Phys. Rev. E
65
,
031919
(
2002
).
61.
V.
Kraus
and
P.
Reineker
,
Phys. Rev. A
43
,
4182
(
1991
).
62.
P.
Reineker
,
Ch.
Warns
,
Th.
Neidlinger
, and
I.
Barvík
,
Chem. Phys.
177
,
715
(
1993
).
63.
I.
Barvík
,
Ch.
Warns
,
Th.
Neidlinger
, and
P.
Reineker
,
Chem. Phys.
240
,
173
(
1999
).
64.
P.
Reineker
,
Ch.
Warns
,
Ch.
Supritz
, and
I.
Barvík
,
J. Lumin.
102-103
,
802
(
2003
).
65.
L. D.
Zusman
,
Chem. Phys.
49
,
295
(
1980
).
66.
K.
Faid
and
R. F.
Fox
,
Phys. Rev. A
35
,
2684
(
1987
).
67.
C. P.
Slichter
, in
Principles of Magnetic Resonance
(
Springer-Verlag
,
Berlin
,
1978
).
68.
Y.
Jung
,
E.
Barkai
, and
R. J.
Silbey
,
Adv. Chem. Phys.
123
,
199
(
2002
).
69.
E.
Barkai
,
Y.
Jung
, and
R.
Silbey
,
Annu. Rev. Phys. Chem.
55
,
457
(
2004
).
70.
S.
Hoyer
,
M.
Sarovar
, and
K. B.
Whaley
,
New J. Phys.
12
,
065041
(
2010
).
71.
V.
Subramanian
and
D. G.
Evans
,
J. Phys. Chem. B
108
,
1085
(
2004
).
72.
K. M.
Gaab
and
C. J.
Bardeen
,
J. Chem. Phys.
121
,
7813
(
2004
).
73.
J.
Cao
and
R. J.
Silbey
,
J. Phys. Chem. A
113
,
13825
(
2009
).
74.
E. G.
Petrov
and
V. I.
Teslenko
,
Theor. Math. Phys.
84
,
986
(
1990
).
75.
A. A.
Villaeys
,
A.
Boeglin
, and
S. H.
Lin
,
Phys. Rev. A
44
,
4660
(
1991
).
76.
H.
Haken
and
G.
Strobl
, in
The Triplet State
(
Cambridge University Press
,
Cambridge, London
,
1967
).
77.
Y.
Inaba
,
J. Phys. Soc. Jpn.
50
,
2473
(
1981
).
78.
R.
Kubo
,
Rep. Prog. Phys.
29
,
255
(
1966
).
79.
A.
Troisi
and
G.
Orlandi
,
Phys. Rev. Lett.
96
,
086601
(
2006
).
80.
H.
Wang
and
M.
Thoss
,
New J. Phys.
10
,
115005
(
2008
).
81.
H.
Wang
and
M.
Thoss
,
Chem. Phys.
370
,
78
(
2010
).
82.
P.
Nalbach
,
J.
Eckel
, and
M.
Thorwart
,
New J. Phys.
12
,
065043
(
2010
).
83.
B. J.
Berne
and
G. D.
Harp
,
Adv. Chem. Phys.
17
,
63
(
1970
).
84.
S.-C.
An
,
C. J.
Montrose
, and
T. A.
Litovitz
,
J. Chem. Phys.
64
,
3717
(
1976
).
85.
D. W.
Oxtoby
,
Adv. Chem. Phys.
47
,
487
(
1981
).
86.
S. A.
Egorov
,
K. F.
Everitt
, and
J. L.
Skinner
,
J. Phys. Chem. A
103
,
9494
(
1999
).
87.
R. F.
Fox
,
I. R.
Gatland
,
R.
Roy
, and
G.
Vemuri
,
Phys. Rev. A
38
,
5938
(
1988
).
88.
89.
M.
Shinozuka
,
J. Acoust. Soc. Am.
49
,
357
(
1971
).
90.
M.
Shinozuka
,
Comput. Struct.
2
,
855
(
1972
).
91.
M.
Shinozuka
and
C.-M.
Jan
,
J. Sound Vib.
25
,
111
(
1972
).
92.
K. Y.R.
Billah
and
M.
Shinozuka
,
Phys. Rev. A
42
,
7492
(
1990
).
93.
H.
Tal-Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
94.
C.
Leforestier
,
R. H.
Bisseling
,
C.
Cerjan
,
M. D.
Feit
,
R.
Friesner
,
A.
Guldberg
,
A.
Hammerich
,
G.
Jolicard
,
W.
Karrlein
,
H. -D.
Meyer
,
N.
Lipkin
,
O.
Roncero
, and
R.
Kosloff
,
J. Comput. Phys.
94
,
59
(
1991
).
95.
H.
Ishii
,
N.
Kobayashi
, and
K.
Hirose
,
Appl. Surf. Sci.
254
,
7600
(
2008
).
96.
U.
Weiss
and
M.
Wollensak
,
Phys. Rev. B
37
,
2729
(
1988
).
97.
U.
Weiss
,
M.
Sassetti
,
T.
Negele
, and
M.
Wollensak
,
Z. Phys. B
84
,
471
(
1991
).
98.
C. H.
Mak
and
R.
Egger
,
Phys. Rev. E
49
,
1997
(
1994
).
99.
X.
Yang
,
L.
Wang
,
C.
Wang
,
W.
Long
, and
Z.
Shuai
,
Chem. Mater.
20
,
3205
(
2008
).
100.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
101.
S. K.
Kehrein
and
A.
Mielke
,
Phys. Lett. A
219
,
313
(
1996
).
102.
T. A.
Costi
,
Phys. Rev. Lett.
80
,
1038
(
1998
).
103.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
2991
(
2001
).
104.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
105.
J.
Wu
,
F.
Liu
,
Y.
Shen
,
J.
Cao
, and
R. J.
Silbey
,
New J. Phys.
12
,
105012
(
2010
).
106.
Y.
Zhao
and
W.
Liang
,
J. Chem. Phys.
130
,
034111
(
2009
).
You do not currently have access to this content.