We employ the coupled dipole method to calculate the polarizability tensor of various anisotropic dielectric clusters of polarizable atoms, such as cuboid-, bowl-, and dumbbell-shaped nanoparticles. Starting from a Hamiltonian of a many-atom system, we investigate how this tensor depends on the size and shape of the cluster. We use the polarizability tensor to calculate the energy difference associated with turning a nanocluster from its least to its most favorable orientation in a homogeneous static electric field, and we determine the cluster dimension for which this energy difference exceeds the thermal energy such that particle alignment by the field is possible. Finally, we study in detail the (local) polarizability of a cubic-shaped cluster and present results indicating that, when retardation is ignored, a bulk polarizability cannot be reached by scaling up the system.

1.
S. C.
Glotzer
and
M. J.
Solomon
,
Nature Mater.
6
,
557
(
2007
).
2.
S.-M.
Yang
,
S.-H.
Kim
,
J.-M.
Lim
, and
G.-R.
Yi
,
J. Mater. Chem.
18
,
2177
(
2008
).
3.
M.
Grzelczak
,
J.
Vermant
,
E. M.
Furst
, and
L. M.
Liz-Marzán
,
ACS Nano
4
,
3591
(
2010
).
4.
M. J.
Solomon
,
Curr. Opin. Colloid Interface Sci.
16
,
158
(
2011
).
5.
S. C.
Glotzer
,
M. A.
Horsch
,
C. R.
Iacovella
,
Z.
Zhang
,
E. R.
Chan
, and
X.
Zhang
,
Curr. Opin. Colloid Interface Sci.
10
,
287
(
2005
).
6.
B.
Nikoobakht
,
Z. L.
Wang
, and
M. A.
El-Sayed
,
J. Phys. Chem. B
104
,
8635
(
2000
).
7.
D.
Fava
,
Z.
Nie
,
M. A.
Winnik
, and
E.
Kumacheva
,
Adv. Mater.
20
,
4318
(
2008
).
9.
D. J.
Kraft
,
W. S.
Vlug
,
C. M.
van Kats
,
A.
van Blaaderen
,
A.
Imhof
, and
W. K.
Kegel
,
J. Am. Chem. Soc.
131
,
1182
(
2009
).
10.
I. D.
Hosein
,
S. H.
Lee
, and
C. M.
Liddell
,
Adv. Funct. Mater.
20
,
3085
(
2010
).
11.
L.
Onsager
,
Ann. N.Y. Acad. Sci.
51
,
627
(
1949
).
12.
K. M.
Ryan
,
A.
Mastroianni
,
K. A.
Stancil
,
H. T.
Liu
, and
A. P.
Alivisatos
,
Nano Lett.
6
,
1479
(
2006
).
13.
D.
van der Beek
,
A. V.
Petukhov
,
P.
Davidson
,
J.
Ferré
,
J. P.
Jamet
,
H. H.
Wensink
,
G. J.
Vroege
,
W.
Bras
, and
H. N. W.
Lekkerkerker
,
Phys. Rev. E
73
,
041402
(
2006
).
14.
K.
Bubke
,
H.
Gnewuch
,
M.
Hempstead
,
J.
Hammer
, and
M. L. H.
Green
,
Appl. Phys. Lett.
71
,
1906
(
1997
).
15.
A. F.
Demirörs
,
P. M.
Johnson
,
C. M.
van Kats
,
A.
van Blaaderen
, and
A.
Imhof
,
Langmuir
26
,
14466
(
2010
).
16.
P. A.
Smith
,
C. D.
Nordquist
,
T. N.
Jackson
,
T. S.
Mayer
,
B. R.
Martin
,
J.
Mbindyo
, and
T. E.
Mallouk
,
Appl. Phys. Lett.
77
,
1399
(
2000
).
17.
D. V.
Talapin
,
E. V.
Shevchenko
,
C. B.
Murray
,
A.
Kornowski
,
S.
Forster
, and
H.
Weller
,
J. Am. Chem. Soc.
126
,
12984
(
2004
).
18.
S.
Ahmed
and
K. M.
Ryan
,
Nano Lett.
7
,
2480
(
2007
).
19.
B. Q.
Sun
and
H.
Sirringhaus
,
J. Am. Chem. Soc.
128
,
16231
(
2006
).
20.
D.
Nagao
,
C. M.
van Kats
,
K.
Hayasaka
,
M.
Sugimoto
,
M.
Konno
,
A.
Imhof
, and
A.
van Blaaderen
,
Langmuir
26
,
5208
(
2010
).
21.
M.
Marechal
,
R. J.
Kortschot
,
A. F.
Demirörs
,
A.
Imhof
, and
M.
Dijkstra
,
Nano Lett.
10
,
1907
(
2010
).
22.
I. D.
Hosein
and
C. M.
Liddell
,
Langmuir
23
,
8810
(
2007
).
23.
L.
Rossi
,
S.
Sacanna
, and
K. P.
Velikov
,
Soft Matter
7
,
64
(
2011
).
24.
X. D.
Wang
,
E.
Graugnard
,
J. S.
King
,
Z. L.
Wang
, and
C. J.
Summers
,
Nano Lett.
4
,
2223
(
2004
).
25.
C.
Zoldesi
,
C. A.
van Walree
, and
A.
Imhof
,
Langmuir
22
,
4343
(
2006
).
26.
H.-Y.
Kim
,
J. O.
Sofo
,
D.
Velegol
,
M. W.
Cole
, and
G.
Mukhopadhyay
,
Phys. Rev. A
72
,
053201
(
2005
).
27.
M. W.
Cole
,
D.
Velegol
,
H.-Y.
Kim
, and
A. A.
Lucas
,
Mol. Simul.
35
,
849
(
2009
).
28.
C. A.
Utreras-Díaz
,
E.
Martín García
, and
M. A. R.
Troncoso
,
Phys. Status Solidi B
190
,
421
(
1995
).
29.
M.
Manninen
,
R. M.
Nieminen
, and
M. J.
Puska
,
Phys. Rev. B
33
,
4289
(
1986
).
30.
W. D.
Knight
,
K.
Clemenger
,
W. A.
de Heer
, and
W. A.
Saunders
,
Phys. Rev. B
31
,
R2539
(
1985
).
31.
A.
Sihvola
,
J. Nanomater.
2007
,
45090
(
2007
).
32.
A.
Sihvola
,
P.
Ylä-Oijala
,
S.
Järvenpää
, and
J.
Avelin
,
IEEE Trans. Antennas Propag.
52
,
2226
(
2004
).
33.
H.
Kettunen
,
H.
Wallén
, and
A.
Sihvola
,
J. Appl. Phys.
102
,
044105
(
2007
).
34.
M.
Pitkonen
,
J. Appl. Phys.
103
,
104910
(
2008
).
35.
M.
Pitkonen
,
J. Math. Phys.
47
,
102901
(
2006
).
36.
M. J.
Renne
and
B. R. A.
Nijboer
,
Chem. Phys. Lett.
1
,
317
(
1967
).
37.
B. R. A.
Nijboer
and
M. J.
Renne
,
Chem. Phys. Lett.
2
,
35
(
1968
).
38.
M. W.
Cole
and
D.
Velegol
,
Mol. Phys.
106
,
1587
(
2008
).
39.
40.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
,
Adv. Phys.
10
,
165
(
1961
).
42.
J. H.
de Boer
,
Trans. Faraday Soc.
32
,
10
(
1936
).
43.
B.
Derjaguin
and
L.
Landau
,
Acta Physicochim. URSS
14
,
633
(
1941
).
44.
E. J. W.
Verwey
and
J. T. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Elsevier
,
New York
,
1948
).
45.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
).
46.
H.-Y.
Kim
,
J. O.
Sofo
,
D.
Velegol
,
M. W.
Cole
, and
A. A.
Lucas
,
J. Chem. Phys.
124
,
074504
(
2006
).
47.
S. M.
Gatica
,
M. W.
Cole
, and
D.
Velegol
,
Nano Lett.
5
,
169
(
2005
).
48.
H.-Y.
Kim
,
J. O.
Sofo
,
D.
Velegol
,
M. W.
Cole
, and
A. A.
Lucas
,
Langmuir
23
,
1735
(
2007
).
49.
This proof relies on the fact that Dij=DijT, which, in turn, can be proven by using induction in combination with the general expression for the inverse of a matrix built up of submatrices:
where
52.
See http://www.netlib.org/lapack/ for information and downloadable versions of LAPACK.
50.
From Eq. (18), we could also have derived an explicit expression for the orientational energy of the cluster shapes discussed in this article:
where in the first line we used αxx = αyy and in the second line, we introduced the angle θ between E0 and the z axis. From the resulting expression, it is clear that the extrema of the orientational energy are located at θ = 0 and θ = π/2 and that the difference in orientational energy between the two extrema is indeed given by Eq. (19).
51.
For bowls and dumbbells, calculations were also done using a face-centered cubic lattice. The results are qualitatively the same. Quantitatively, the enhancement factors tend to differ from unity more with an fcc lattice than with a sc lattice, which can be attributed to the higher density of atoms, resulting in stronger atom-atom interactions and hence stronger many-body effects.
53.
54.
R.
Barrett
,
M.
Berry
,
T. F.
Chan
,
J.
Demmel
,
J.
Donato
,
J.
Dongarra
,
V.
Eijkhout
,
R.
Pozo
,
C.
Romine
, and
H.
van der Vorst
,
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
(
SIAM
,
Philadelphia
,
1994
).
You do not currently have access to this content.