Partial pair-correlation functions of colloidal suspensions with continuous polydispersity can be challenging to characterize from optical microscopy or computer simulation data due to inadequate sampling. As a result, it is common to adopt an effective one-component description of the structure that ignores the differences between particle types. Unfortunately, whether this kind of simplified description preserves or averages out information important for understanding the behavior of the fluid depends on the degree of polydispersity and can be difficult to assess, especially when the corresponding multicomponent description of the pair correlations is unavailable for comparison. Here, we present a computer simulation study that examines the implications of adopting an effective one-component structural description of a polydisperse fluid. The square-well model that we investigate mimics key aspects of the experimental behavior of suspended colloids with short-range, polymer-mediated attractions. To characterize the partial pair-correlation functions and thermodynamic excess entropy of this system, we introduce a Monte Carlo sampling strategy appropriate for fluids with a large number of pseudo-components. The data from our simulations at high particle concentrations, as well as exact theoretical results for dilute systems, show how qualitatively different trends between structural order and particle attractions emerge from the multicomponent and effective one-component treatments, even with systems characterized by moderate polydispersity. We examine consequences of these differences for excess-entropy based scalings of shear viscosity, and we discuss how use of the multicomponent treatment reveals similarities between the corresponding dynamic scaling behaviors of attractive colloids and liquid water that the effective one-component analysis does not capture.

1.
L.
Blum
and
G.
Stell
,
J. Chem. Phys.
71
,
42
(
1979
).
2.
J. J.
Salacuse
and
G.
Stell
,
J. Chem. Phys.
77
,
3714
(
1982
).
3.
M.
Kotlarchyk
and
S.-H.
Chen
,
J. Chem. Phys.
79
,
2461
(
1983
).
4.
J. G.
Briano
and
E. D.
Glandt
,
J. Chem. Phys.
80
,
3336
(
1984
).
5.
E.
Dickinson
,
Ind. Eng. Chem. Prod. Res. Dev.
25
,
82
(
1986
).
6.
J. L.
Barrat
and
J. P.
Hansen
,
J. Phys. (France)
47
,
1547
(
1986
).
7.
D. A.
Kofke
and
E. D.
Glandt
,
J. Chem. Phys.
90
,
439
(
1989
).
8.
P. G.
Bolhuis
and
D. A.
Kofke
,
Phys. Rev. E
54
,
634
(
1996
).
9.
J. K.
Phalakornkul
,
A. P.
Gast
,
R.
Pecora
,
G.
Nägele
,
A.
Ferrante
,
B.
Mandl-Steininger
, and
R.
Klein
,
Phys. Rev. E
54
,
661
(
1996
).
10.
W.
van Megen
,
T. C.
Mortensen
,
S. R.
Williams
, and
J.
Müller
,
Phys. Rev. E
58
,
6073
(
1998
).
11.
S.-E.
Phan
,
W. B.
Russel
,
J.
Zhu
, and
P. M.
Chaikin
,
J. Chem. Phys.
108
,
9789
(
1998
).
12.
P.
Bartlett
and
P. B.
Warren
,
Phys. Rev. Lett.
82
,
1979
(
1999
).
13.
R. P.
Sear
,
Europhys. Lett.
44
,
531
(
1998
).
14.
D. J.
Lacks
and
J. R.
Wienhoff
,
J. Chem. Phys.
111
,
398
(
1999
).
15.
P.
Sollich
,
J. Phys.: Condens. Matter
14
,
R79
(
2002
).
16.
D.
Frydel
and
S. A.
Rice
,
Phys. Rev. E
71
,
041402
(
2005
).
17.
D.
Frydel
and
S. A.
Rice
,
Phys. Rev. E
71
,
041403
(
2005
).
18.
A.
Sheu
and
S. A.
Rice
,
Phys. Rev. E
72
,
011407
(
2005
).
19.
C. P.
Royall
,
A. A.
Louis
, and
H.
Tanaka
,
J. Chem. Phys.
127
,
044507
(
2007
).
20.
P.
Sollich
,
P. B.
Warren
, and
M. E.
Cates
,
Moment Free Energies for Polydisperse Systems
(
Wiley
,
New York
,
2007
), pp.
265
336
.
21.
S. E.
Abraham
and
B.
Bagchi
,
Phys. Rev. E
78
,
051501
(
2008
).
22.
P. N.
Pusey
,
E.
Zaccarelli
,
C.
Valeriani
,
E.
Sanz
,
W. C. K.
Poon
, and
M. E.
Cates
,
Philos. Trans. R. Soc. London, Ser. A
367
,
4993
(
2009
).
23.
P.
Sollich
and
N. B.
Wilding
,
Soft Matter
7
,
4472
(
2011
).
24.
L.
Berthier
,
P.
Chaudhuri
,
C.
Coulais
,
O.
Dauchot
, and
P.
Sollich
,
Phys. Rev. Lett.
106
,
120601
(
2011
).
25.
C. E.
Zachary
,
Y.
Jiao
, and
S.
Torquato
,
Phys. Rev. Lett.
106
,
178001
(
2011
).
26.
G. M.
Whitesides
and
B.
Grzybowski
,
Science
295
,
2418
(
2002
).
27.
V. N.
Manoharan
and
D. J.
Pine
,
MRS Bull.
29
,
91
(
2004
).
28.
S.
Auer
and
D.
Frenkel
,
Nature (London)
413
,
711
(
2001
).
29.
H. J.
Schope
,
G.
Bryant
, and
W.
van Megen
,
J. Chem. Phys.
127
,
084505
(
2007
).
30.
P.
Salgi
and
R.
Rajagopalan
,
Adv. Colloid Interface Sci.
43
,
169
(
1993
).
31.
T. O.
Pangburn
and
M. A.
Bevan
,
J. Chem. Phys.
123
,
174904
(
2005
).
32.
T. O.
Pangburn
and
M. A.
Bevan
,
J. Chem. Phys.
124
,
054712
(
2006
).
33.
B.
D'Aguanno
and
R.
Klein
,
J. Chem. Soc., Faraday Trans.
87
,
379
(
1991
).
34.
F.
Lado
,
J. Chem. Phys.
108
,
6441
(
1998
).
35.
B. J.
Anderson
,
V.
Gopalakrishnan
,
S.
Ramakrishnan
, and
C. F.
Zukoski
,
Phys. Rev. E
73
,
031407
(
2006
).
36.
D.
Frenkel
,
R. J.
Vos
,
C. G.
de Kruif
, and
A.
Vrij
,
J. Chem. Phys.
84
,
4625
(
1986
).
37.
P.
van Beurten
and
A.
Vrij
,
J. Chem. Phys.
74
,
2744
(
1981
).
38.
M.
Ginoza
and
M.
Yasutomi
,
J. Phys. Soc. Jpn.
68
,
2292
(
1999
).
39.
J. C.
Crocker
and
D. G.
Grier
,
J. Colloid Interface Sci.
179
,
298
(
1996
).
40.
C. P.
Royall
,
M. E.
Leunissen
, and
A.
van Blaaderen
,
J. Phys.: Condens. Matter
15
,
S3581
(
2003
).
41.
P.
Varadan
and
M. J.
Solomon
,
Langmuir
19
,
509
(
2003
).
42.
V.
Prasad
,
D.
Semwogerere
, and
E. R.
Weeks
,
J. Phys.: Condens. Matter
19
,
113102
(
2007
).
43.
C. R.
Iacovella
,
R. E.
Rogers
,
S. C.
Glotzer
, and
M. J.
Solomon
,
J. Chem. Phys.
133
,
164903
(
2010
).
44.
M. A.
Bevan
and
S. L.
Eichmann
,
Curr. Opin. Colloid Interface Sci.
16
,
149
(
2011
).
45.
W. P.
Krekelberg
,
J.
Mittal
,
V.
Ganesan
, and
T. M.
Truskett
,
J. Chem. Phys.
127
,
044502
(
2007
).
46.
T.
Eckert
and
E.
Bartsch
,
Phys. Rev. Lett.
89
,
125701
(
2002
).
47.
K. N.
Pham
,
A. M.
Puertas
,
J.
Bergenholtz
,
S. U.
Egelhaaf
,
A.
Moussaïd
,
P. N.
Pusey
,
A. B.
Schofield
,
M. E.
Cates
,
M.
Fuchs
, and
W. C. K.
Poon
,
Science
296
,
104
(
2002
).
48.
F.
Sciortino
,
Nature Mater.
1
,
145
(
2002
).
49.
E.
Zaccarelli
,
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
50.
D.
Kofke
and
E.
Glandt
,
Mol. Phys.
64
,
1105
(
1988
).
51.
G.
Rutledge
,
Phys. Rev. E
63
,
021111
(
2001
).
52.
N.
Wilding
and
P.
Sollich
,
J. Chem. Phys.
116
,
7116
(
2002
).
53.
N. B.
Wilding
,
J. Chem. Phys.
119
,
12163
(
2003
).
54.
T. M.
Truskett
,
S.
Torquato
, and
P. G.
Debenedetti
,
Phys. Rev. E
62
,
993
(
2000
).
56.
A.
Samanta
,
S. M.
Ali
, and
S. K.
Ghosh
,
Phys. Rev. Lett.
87
,
245901
(
2001
).
57.
J.
Mittal
,
J. R.
Errington
, and
T. M.
Truskett
,
J. Phys. Chem. B
110
,
18147
(
2006
).
58.
J. R.
Errington
,
P. G.
Debenedetti
, and
S.
Torquato
,
J. Chem. Phys.
118
,
2256
(
2003
).
59.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
60.
J.
Errington
and
V.
Shen
,
J. Chem. Phys.
123
,
164103
(
2005
).
61.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
,
J. Chem. Phys.
96
,
1776
(
1992
).
62.
E.
Cichowski
,
T.
Schmidt
, and
J.
Errington
,
Fluid Phase Equilib.
236
,
58
(
2005
).
63.
J. R.
Errington
and
D. A.
Kofke
,
J. Chem. Phys.
127
,
174709
(
2007
).
64.
S.
Asakura
and
F.
Oosawa
,
J. Chem. Phys.
22
,
1255
(
1954
).
65.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
,
J. Chem. Phys.
31
,
369
(
1959
).
66.
T. M.
Truskett
,
S.
Torquato
,
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Phys. Rev. E
58
,
3083
(
1998
).
67.
T.
Goel
,
C. N.
Patra
,
T.
Mukherjee
, and
C.
Chakravarty
,
J. Chem. Phys.
129
,
164904
(
2008
).
68.
Y.
Rosenfeld
,
Phys. Rev. A
15
,
2545
(
1977
).
69.
Y.
Rosenfeld
,
J. Phys.: Condens. Matter
11
,
5415
(
1999
).
70.
R.
Chopra
,
T. M.
Truskett
, and
J. R.
Errington
,
J. Phys. Chem. B
114
,
10558
(
2010
).
71.
W. P.
Krekelberg
,
J.
Mittal
,
V.
Ganesan
, and
T. M.
Truskett
,
Phys. Rev. E
77
,
041201
(
2008
).
You do not currently have access to this content.