Crystallization and vitrification of tetrahedral liquids are important both from a fundamental and a technological point of view. Here, we study via extensive umbrella sampling Monte Carlo computer simulations the nucleation barriers for a simple model for tetrahedral patchy particles in the regime where open tetrahedral crystal structures (namely, cubic and hexagonal diamond and their stacking hybrids) are thermodynamically stable. We show that by changing the angular bond width, it is possible to move from a glass-forming model to a readily crystallizing model. From the shape of the barrier we infer the role of surface tension in the formation of the crystalline clusters. Studying the trends of the nucleation barriers with the temperature and the patch width, we are able to identify an optimal value of the patch size that leads to easy nucleation. Finally, we find that the nucleation barrier is the same, within our numerical precision, for both diamond crystals and for their stacking forms.

1.
D.
Kashchiev
,
Nucleation
(
Butterworth-Heinemann
,
Oxford
,
2000
).
2.
K. F.
Kelton
and
A. L.
Greer
,
Nucleation in Condensed Matter: Applications in Materials and Biology
(
Elsevier
,
New York
,
2010
).
3.
P. G.
Vekilov
,
Soft Matter
6
,
5254
(
2010
).
4.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
,
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
5.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
6.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
110
,
1591
(
1999
).
7.
S.
Auer
and
D.
Frenkel
,
Nature (London)
409
,
1020
(
2001
).
8.
S.
Auer
and
D.
Frenkel
,
J. Chem. Phys.
120
,
3015
(
2004
).
9.
C.
Valeriani
,
E.
Sanz
, and
D.
Frenkel
,
J. Chem. Phys.
122
,
194501
(
2005
).
10.
J. W.
Gibbs
,
The Scientific Papers of J. Willard Gibbs
(
Dover
,
New York
,
1961
).
11.
M.
Volmer
and
A.
Weber
,
Z. Phys. Chem.
119
,
227
(
1926
).
12.
L.
Farkas
,
Z. Phys. Chem.
125
,
236
(
1927
).
13.
R.
Becker
and
W.
Döring
,
Ann. Phys.
24
,
719
(
1935
).
14.
K. F.
Kelton
,
Crystal Nucleation in Liquids and Glasses
(
Academic
,
Boston
,
1991
), Vol. 45, pp.
75
177
.
15.
P. G.
Debenedetti
,
Metastable Liquids. Concepts and Principles
(
Princeton University
,
Princeton, NJ
,
1996
).
16.
M.
Matsumoto
,
S.
Saito
, and
I.
Ohmine
,
Nature (London)
416
,
409
(
2002
).
17.
M.
Yamada
,
S.
Mossa
,
H. E.
Stanley
, and
F.
Sciortino
,
Phys. Rev. Lett.
88
,
195701
(
2002
).
18.
T.
Motooka
and
S.
Munetoh
,
Phys. Rev. B
69
,
073307
(
2004
).
19.
E.
Sanz
,
C.
Vega
,
J. L. F.
Abascal
, and
L. G.
MacDowell
,
Phys. Rev. Lett.
92
,
255701
(
2004
).
20.
P.
Beaucage
and
N.
Mousseau
,
Phys. Rev. B
71
,
094102
(
2005
).
21.
E. G.
Noya
,
C.
Vega
,
J. P. K.
Doye
, and
A. A.
Louis
,
J. Chem. Phys.
132
,
234511
(
2010
).
22.
L. M.
Ghiringhelli
,
C.
Valeriani
,
E. J.
Meijer
, and
D.
Frenkel
,
Phys. Rev. Lett.
99
,
055702
(
2007
).
23.
L. M.
Ghiringhelli
,
C.
Valeriani
,
J. H.
Los
,
E. J.
Meijer
,
A.
Fasolino
, and
D.
Frenkel
,
Mol. Phys.
106
,
2011
(
2008
).
24.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
25.
V.
Molinero
,
S.
Sastry
, and
C. A.
Angell
,
Phys. Rev. Lett.
97
,
075701
(
2006
).
26.
T.
Li
,
D.
Donadio
,
L. M.
Ghiringhelli
, and
G.
Galli
,
Nat. Mater.
8
,
726
(
2009
).
27.
M.
Maldovan
and
E. L.
Thomas
,
Nat. Mater.
3
,
593
(
2004
).
28.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
134
,
174502
(
2011
).
29.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
(
2003
).
30.
W.
Ostwald
,
Z. Phys. Chem.
22
,
289
(
1897
).
31.
R. A.
van Santen
,
J. Phys. Chem.
88
,
5768
(
1984
).
32.
P. R.
ten Wolde
and
D.
Frenkel
,
Phys. Chem. Chem. Phys.
1
,
2191
(
1999
).
33.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
San Diego
,
1996
).
34.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
132
,
184501
(
2010
).
35.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
36.
J.
Wedekind
,
R.
Strey
, and
D.
Reguera
,
J. Chem. Phys.
126
,
134103
(
2007
).
37.
J.
Wedekind
and
D.
Reguera
, in
Proceedings of the 17th International Conference on Kinetic Reconstruction of the Nucleation Free Energy Landscape in Nucleation and Atmospheric Aerosols
, Galway, Ireland, 13–17 August 2007 (
Springer
,
Netherlands
,
2008
).
38.
J.
Wedekind
and
D.
Reguera
,
J. Phys. Chem. B
112
,
11060
(
2008
).
39.
G.
Chkonia
,
J.
Wlk
,
R.
Strey
,
J.
Wedekind
, and
D.
Reguera
,
J. Phys. Chem. B
130
,
064505
(
2009
).
40.
S. E. M.
Lundrigan
and
I.
Saika-Voivod
,
J. Chem. Phys.
131
,
104503
(
2009
).
41.
I.
Saika-Voivod
,
P. H.
Poole
, and
R. K.
Bowles
,
J. Chem. Phys.
124
,
224709
(
2006
).
42.
W.
Lechner
,
C.
Dellago
, and
P. G.
Bolhuis
,
Phys. Rev. Lett.
106
,
085701
(
2011
).
43.
S.
Ryu
and
W.
Cai
,
Phys. Rev. E
81
,
030601
R
(
2010
).
44.
L.
Filion
,
M.
Hermes
,
R.
Ni
, and
M.
Dijkstra
,
J. Chem. Phys.
133
,
244115
(
2010
).
45.
Here, Δμ refers specifically to the difference in chemical potential between the DC crystal and the fluid, as calculated in Ref. 28, even in the case of cos θ = 0.98, where the stable phase is bcc. Tm is determined from the condition Δμ = 0.
46.
We have used Tg = 1450 K and Tm = 1823 K for quartz.
47.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature (London)
410
,
259
(
2001
).
48.
S.
Sakka
and
J. D.
Mackenzie
,
J. Non-Cryst. Solids
6
,
145
(
1971
).
49.
W. A.
Lee
and
G. J.
Knight
,
Br. Polym. J.
2
,
73
(
1970
).
You do not currently have access to this content.