Hydrogen (H+) and hydroxide (OH) ions in aqueous solution have anomalously large diffusion coefficients, and the mobility of the H+ ion is nearly twice that of the OH ion. We describe molecular dynamics simulations of a dissociating model for liquid water based on scaling the interatomic potential for water developed by Ojamäe-Shavitt-Singer from ab initio studies at the MP2 level. We use the scaled model to study proton transfer that occurs in the transport of hydrogen and hydroxide ions in acidic and basic solutions containing 215 water molecules. The model supports the Eigen-Zundel-Eigen mechanism of proton transfer in acidic solutions and the transient hyper-coordination of the hydroxide ion in weakly basic solutions at room temperature. The free energy barriers for proton transport are low indicating significant proton delocalization accompanying proton transfer in acidic and basic solutions. The reorientation dynamics of the hydroxide ion suggests changes in the proportions of hyper-coordinated species with temperature. The mobilities of the hydrogen and hydroxide ions and their temperature dependence between 0 and 50 °C are in excellent agreement with experiment and the reasons for the large difference in the mobilities of the two ions are discussed. The model and methods described provide a novel approach to studies of liquid water, proton transfer, and acid-base reactions in aqueous solutions, channels, and interfaces.

1.
M. E.
Tuckerman
,
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
103
,
150
(
1995
).
2.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
).
3.
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
417
,
925
(
2002
).
4.
B.
Chen
,
J. M.
Park
,
I.
Ivanov
,
G.
Tabacchi
,
M. L.
Klein
, and
M.
Parrinello
,
J. Am. Chem. Soc.
124
,
8534
(
2002
)
5.
D.
Asthagiri
,
L. R.
Pratt
,
J. D.
Kress
, and
M. A.
Gomez
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
7229
(
2004
).
6.
D.
Bucher
,
A.
Gray-Weale
, and
S.
Kuyucak
,
J. Chem. Theory Comput.
6
,
2888
(
2010
).
7.
A.
Warshel
and
R. M.
Weiss
,
J. Am. Chem. Soc.
102
,
6218
(
1980
).
8.
R.
Vuilleumier
and
D.
Borgis
,
J. Chem. Phys.
111
,
4251
(
1999
).
9.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
104
,
2056
(
1996
).
10.
U. W.
Schmidt
and
G. A.
Voth
,
J. Phys. Chem. B.
102
,
5547
(
1998
).
11.
T. J. F.
Day
,
A. V.
Soudakov
,
M.
Cuma
,
U. W.
Schmidt
, and
G. A.
Voth
,
J. Chem. Phys.
117
,
5839
(
2002
).
12.
I. S.
Ufimstev
,
A. G.
Kalinichev
,
T. J.
Martinez
, and
R. J.
Kirkpatrick
,
Phys. Chem. Chem. Phys.
11
,
9420
(
2009
).
13.
M. E.
Selvan
,
D. J.
Keffer
,
S.
Cui
, and
S. J.
Paddison
,
J. Phys. Chem. C
14
,
11965
(
2010
).
14.
F.
Bruni
,
M. A.
Ricci
, and
A. K.
Soper
,
J. Chem. Phys.
114
,
8056
(
2001
).
15.
A.
Botti
,
F.
Bruni
,
S.
Imberti
,
M. A.
Ricci
, and
A. K.
Soper
,
J. Chem. Phys.
119
,
5001
(
2003
).
16.
A.
Botti
,
F.
Bruni
,
S.
Imberti
,
M. A.
Ricci
, and
A. K.
Soper
,
J. Chem. Phys.
120
,
10154
(
2004
).
17.
S.
Imberti
,
A.
Botti
,
F.
Bruni
,
G.
Cappa
,
M. A.
Ricci
, and
A. K.
Soper
,
J. Chem. Phys.
122
,
194509
(
2005
).
18.
A.
Botti
,
F.
Bruni
,
S.
Imberti
,
M. A.
Ricci
, and
A. K.
Soper
,
J. Mol. Liq.
117
,
77
(
2005
).
19.
A.
Botti
,
F.
Bruni
,
S.
Imberti
,
M. A.
Ricci
, and
A. K.
Soper
,
J. Mol. Liq.
117
,
81
(
2005
).
20.
S. E.
McLain
,
S.
Imberti
,
A. K.
Soper
,
A.
Botti
,
F.
Bruni
, and
M. A.
Ricci
,
Phys. Rev. B
74
,
0942201
(
2006
).
21.
T.
Megyes
,
S.
Balint
,
T.
Grosz
,
T.
Radnai
,
L.
Bakó
, and
P.
Sipsos
,
J. Chem. Phys.
128
,
044501
(
2008
).
22.
C. D.
Cappa
,
J. D. Smith
, B. M. Messer, R. C.
Cohen
, and
J.
Saykally
,
J. Phys. Chem. A
111
,
4776
(
2007
).
23.
K. S.
Asmis
,
N. L.
Privonka
,
G.
Santambrogio
,
M.
Brummer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Wöste
,
Science
299
,
1375
(
2003
).
24.
M.
Rini
,
B. Z.
Magnus
,
E.
Pines
, and
E. T. J.
Nibbering
,
Science
301
,
493
(
2003
).
25.
O. F.
Mohamed
,
D.
Pines
,
J.
Dreyer
,
E.
Pines
, and
E. T. J.
Nibbering
,
Science
310
,
83
(
2005
).
26.
J. M.
Headrick
,
E. G.
Diken
,
R. S.
Walters
,
N. I.
Hammer
,
R. A.
Christie
,
J.
Cui
,
E. M.
Myshakin
,
M. A.
Duncan
,
M. A.
Johnson
, and
K. D.
Jordan
,
Science
308
,
1765
(
2005
).
27.
S.
Woutersen
and
H. J.
Bakker
,
Phys. Rev. Lett.
96
,
138305
(
2006
).
28.
J.
Thøgersen
,
S. K.
Jensen
,
C.
Petersen
, and
S.
Keiding
,
Chem. Phys. Lett.
466
,
1
(
2008
).
29.
S. T.
Roberts
,
P. B.
Petersen
,
K.
Ramasesha
,
A.
Tokmakoff
,
I. S.
Ufimtsev
, and
T. J.
Martinez
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
15154
(
2009
).
30.
S. G.
Olesen
,
T. L.
Guasco
,
J. R.
Roscioli
, and
M. A.
Johnson
,
Chem. Phys. Lett.
509
,
89
(
2011
).
31.
S. T.
Roberts
,
K.
Ramasesha
,
P. B.
Petersen
,
A.
Mandal
, and
A.
Tokmakoff
,
J. Phys. Chem. A
115
,
3957
(
2011
).
32.
E. F.
Aziz
,
N.
Ottosson
,
M
Faubel
,
I. V.
Hertel
, and
B.
Winter
,
Nature (London)
455
,
89
(
2008
).
33.
A.
Chandra
,
M. E.
Tuckerman
, and
D.
Marx
,
Phys. Rev. Lett.
99
,
145901
(
2007
).
34.
N.
Agmon
,
Chem. Phys. Lett.
244
,
456
(
1995
).
35.
N.
Agmon
,
Isr. J. Chem.
39
,
493
(
1999
).
36.
J.
Hynes
,
Nature (London)
397
,
565
(
1999
).
37.
N.
Agmon
,
Chem. Phys. Lett.
319
,
247
(
2000
).
38.
R.
Ludwig
,
Angew. Chem., Int. Ed.
42
,
258
(
2003
).
39.
M. E.
Tuckerman
,
A.
Chandra
, and
D.
Marx
,
Acc. Chem. Res.
39
,
151
(
2006
).
40.
G. A.
Voth
,
Acc. Chem. Res.
39
,
143
(
2006
).
41.
J. M. J.
Swanson
,
C. M.
Maupin
,
H.
Chen
,
M. K.
Petersen
,
J.
Xu
,
Y.
Wu
, and
G. A.
Voth
,
J. Phys. Chem. B
111
,
4300
(
2007
).
42.
H.
Lapid
,
N.
Agmon
,
M. K.
Petersen
, and
G. A.
Voth
,
J. Chem. Phys.
122
,
014506
(
2005
).
43.
O.
Markovitch
,
H.
Chen
,
S.
Izvekov
,
F.
Paesani
,
G. A.
Voth
, and
N.
Agmon
,
J. Phys. Chem. B
112
,
9456
(
2008
).
44.
D.
Marx
,
A.
Chandra
, and
M. E.
Tuckerman
,
Chem. Rev.
110
,
2174
(
2010
).
45.
D.
Asthagiri
,
L. R.
Pratt
,
J. D.
Kress
, and
M. A.
Gomez
,
Chem. Phys. Lett.
380
,
530
(
2003
).
46.
E. E.
Dahlke
and
D. G.
Truhlar
,
J. Phys. Chem. B
109
,
15677
(
2005
).
47.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hutter
,
M.
Sprik
, and
M.
Parinello
,
J. Chem. Phys.
122
,
014515
(
2005
).
48.
I. S.
Ufimstev
,
A. G.
Kalinchev
,
T. J.
Martinez
, and
R. J.
Kirkpatrick
,
Chem. Phys. Lett.
442
,
128
(
2007
)
49.
L.
Ojamäe
,
I.
Shavitt
, and
S. J.
Singer
,
J. Chem. Phys.
109
,
5547
(
1998
).
50.
H. L.
Lemberg
and
F. H.
Stillinger
,
J. Chem. Phys.
62
,
1677
(
1975
).
51.
F. H.
Stillinger
and
C. W.
David
,
J. Chem. Phys.
73
,
3384
(
1980
).
52.
T. A.
Weber
and
F. H.
Stillinger
,
J. Chem. Phys.
77
,
4150
(
1982
).
53.
S. H.
Lee
and
J. C.
Rasaiah
,
Mol. Simul.
36
,
69
(
2010
).
54.
G.
Stell
, “Fluids with long-range forces,” in
Statistical Mechanics Part A
,
Equilibrium Techniques, Modern Theoretical Chemistry
Vol. 5, edited by
B. J.
Berne
(
Plenum
,
New York
,
1977
), Chap. 2.
55.
G.
Stell
,
J. C.
Rasaiah
, and
H.
Narang
,
Mol. Phys.
27
,
1393
(
1974
).
56.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
57.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
58.
S. H.
Lee
,
Bull. Korean Chem. Soc.
22
,
847
(
2001
).
59.
P.
Atkins
and
J. D.
Paula
,
Physical Chemistry
, 7th ed. (
Freeman
,
New York
,
2002
), p.
1104
.
60.
M.
Holz
,
S. R.
Heil
, and
A.
Sacco
,
Phys. Chem. Chem. Phys.
2
,
4740
(
2002
).
61.
A. J.
Easteal
,
W. E.
Price
, and
L. A.
Woolf
,
J. Chem. Soc., Faraday Tans. 1
85
,
1091
(
1985
).
62.
D. A.
Turton
and
K.
Wynne
,
J. Chem. Phys.
128
,
154516
(
2008
).
63.
A.
Luzar
and
D.
Chandler
,
Nature (London)
379
,
55
(
1996
).
64.
D.
Laage
and
J. T.
Hynes
,
Science
311
,
832
(
2006
).
65.
D.
Laage
and
J. T.
Hynes
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
11167
(
2007
).
66.
D.
Laage
and
J. T.
Hynes
,
J. Phys. Chem. B
112
,
14230
(
2008
).
67.
A. K.
Soper
,
Chem. Phys.
258
,
121
(
2000
).
68.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
69.
S.
Koneshan
,
J. C.
Rasaiah
, and
L. X.
Dang
,
J. Chem. Phys.
114
,
7544
(
2001
).
70.
M. E.
Tuckerman
,
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Phys. Chem.
99
,
5749
(
1995
).
71.
T. C.
Berkelbach
,
H.-S.
Lee
, and
M. E.
Tuckerman
,
Phys. Rev. Lett.
103
,
238302
(
2009
).
72.
X.
Sun
,
S.
Yoo
,
S. S.
Xantheas
, and
L. X.
Dang
,
Chem. Phys. Lett.
481
,
9
(
2009
).
73.
Z.
Luz
and
S.
Meiboom
,
J. Am. Chem. Soc.
86
,
4768
(
1964
)
74.
R. H.
Stokes
,
J. Phys. Chem.
65
,
1242
(
1961
).
75.
C. H.
Hamann
,
A.
Hamnett
, and
W.
Vielstich
,
Electrochemistry
, 2nd ed. (
Wiley VCH
,
Berlin
,
2007
).
76.
H. S.
Harned
and
B. B.
Owen
,
The Physical Chemistry of Electrolyte Solutions
, 3rd ed. (
Reinhold
,
New York
,
1958
).
77.
T. S.
Light
,
S.
Licht
,
A. C.
Bevilacqua
, and
K. R.
Morash
,
Electrochem. Solid-State Lett.
8
,
E16
(
2008
).
78.
C. J.
Mundy
,
I.-F. W.
Kuo
,
M. E.
Tuckerman
,
H.-S.
Lee
, and
D. J.
Tobias
,
Chem. Phys. Lett.
481
,
2
(
2009
).
79.
J. C.
Rasaiah
,
S.
Garde
, and
G.
Hummer
,
Ann. Rev. Phys. Chem.
59
,
713
(
2008
).
80.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature (London)
414
,
188
(
2001
).
81.
C.
Dellago
,
M. M.
Naor
, and
G.
Hummer
,
Phys. Rev. Lett.
90
,
105902
(
2003
).
You do not currently have access to this content.