The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn–Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys.122, 034104 (2005)

]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys.130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
I.
Grabowski
,
S.
Hirata
,
S.
Ivanov
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
4415
(
2002
).
4.
R. J.
Bartlett
,
I.
Grabowski
,
S.
Hirata
, and
S.
Ivanov
,
J. Chem. Phys.
122
,
034104
(
2005
).
5.
P.
Mori-Sánchez
,
Q.
Wu
, and
W.
Yang
,
J. Chem. Phys.
123
,
062204
(
2005
).
6.
H.
Jiang
and
E.
Engel
,
J. Chem. Phys.
123
,
224102
(
2005
).
7.
D.
Rohr
,
O.
Gritsenko
, and
E. J.
Baerends
,
Chem. Phys. Lett.
432
,
336
(
2006
).
8.
I.
Grabowski
,
V.
Lotrich
, and
R. J.
Bartlett
,
J. Chem. Phys.
127
,
154111
(
2007
).
9.
I.
Grabowski
,
Int. J. Quantum Chem.
108
,
2076
(
2008
).
10.
J.
Perdew
and
K.
Schmidt
, “
Jacob's ladder of density functional approximations for the exchange-correlation energy
,” in
Density Functional Theory and Its Applications to Materials
, edited by
V. V.
Doren
,
K. V.
Alsenoy
, and
P.
Geerlings
(
American Institute of Physics
,
Melville
,
2001
), pp.
1
20
.
11.
R. T.
Sharp
and
G. K.
Horton
,
Phys. Rev.
90
,
317
(
1953
).
12.
J. C.
Slater
,
Phys. Rev.
81
,
385
(
1951
).
13.
J. D.
Talman
and
W. F.
Shadwick
,
Phys. Rev. A
14
,
36
(
1976
).
14.
T.
Grabo
and
E. K. U.
Gross
,
Int. J. Quantum Chem.
64
,
95
(
1997
).
15.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
16.
A.
Görling
and
M.
Levy
,
Phys. Rev. A
50
,
196
(
1994
).
17.
S.
Ivanov
and
R. J.
Bartlett
,
Chem. Phys. Lett.
308
,
449
(
1999
).
18.
A. F.
Bonetti
,
E.
Engel
,
R. H.
Schmidt
, and
E. M.
Dreizler
,
Phys. Rev. Lett.
86
,
2241
(
2001
).
19.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
20.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
,
Phys. Lett. A
146
,
256
(
1990
).
21.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
,
Phys. Rev. A
45
,
101
(
1992
).
22.
E.
Engel
and
S. H.
Vosko
,
Phys. Rev. A
47
,
2800
(
1993
).
23.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
,
Phys. Rev. Lett.
83
,
5455
(
1999
).
24.
A.
Görling
,
Phys. Rev. Lett.
83
,
5459
(
1999
).
25.
S.
Hirata
,
S.
Ivanov
,
I.
Grabowski
,
R. J.
Bartlett
,
K.
Burke
, and
J. D.
Talman
,
J. Chem. Phys.
115
,
1635
(
2001
).
26.
A. J.
Cohen
,
Q.
Wu
, and
W.
Yang
,
Chem. Phys. Lett.
399
,
84
(
2004
).
27.
O. B.
Lutnæs
,
A. M.
Teale
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Theory Comput.
827
,
2
(
2006
).
28.
O. B.
Lutnæs
,
A. M.
Teale
,
T.
Helgaker
,
D. J.
Tozer
,
K.
Ruud
, and
J.
Gauss
,
J. Chem. Phys.
131
,
144104
(
2009
).
29.
R. J.
Bartlett
,
Mol. Phys.
108
,
3299
(
2010
).
30.
I. V.
Schweigert
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
J. Chem. Phys.
125
,
104108
(
2006
).
31.
V.
Lotrich
,
R. J.
Bartlett
, and
I.
Grabowski
,
Chem. Phys. Lett.
405
,
33
(
2005
).
32.
R. J.
Bartlett
,
V.
Lotrich
, and
I. V.
Schweigert
,
J. Chem. Phys.
123
,
62205
(
2005
).
33.
I.
Grabowski
,
V.
Lotrich
, and
S.
Hirata
,
Mol. Phys.
108
,
3313
(
2010
).
34.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
35.
I.
Grabowski
and
V.
Lotrich
,
Mol. Phys.
103
,
2087
(
2005
).
36.
A.
Görling
and
M.
Levy
,
Int. J. Quantum Chem. Symp.
29
,
93
(
1995
).
37.
W.
Yang
and
Q.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
38.
E.
Engel
, “
Orbital-dependent functionals for the exchange–correlation energy: A third generation of density functionals
,” in
A Primer in Density Functional Theory
, edited by
F. N. C.
Fiolhais
and
M.
Marques
(
Springer-Verlag
,
Berlin
,
2003
), pp.
56
117
.
39.
L. J.
Sham
and
M.
Schlüter
,
Phys. Rev. Lett.
51
,
1888
(
1983
).
40.
S.
Ivanov
and
M.
Levy
,
J. Chem. Phys.
116
,
6924
(
2002
).
41.
R. J.
Bartlett
, “
Coupled-cluster theory: An overview of recent developments
,” in
Modern Electronic Structure Theory, Part II
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), pp.
1047
1131
.
42.
R. J.
Bartlett
,
J. Phys. Chem.
93
,
1697
(
1989
).
43.
J.
Paldus
and
J.
Čižek
, “
Coupled-cluster theory: An overview of recent developments
,” in
Energy Structure and Reactivity
, edited by
D.
Smith
and
W. B.
McRae
(
Wiley
,
New York
,
1973
), pp.
198
212
.
44.
D.
Bokhan
and
R. J.
Bartlett
,
Chem. Phys. Lett.
427
,
466
(
2006
).
45.
B. G.
Adams
and
K.
Jankowski
,
Int. J. Quantum. Chem.
17
,
297
(
1983
).
46.
V.
Lotrich
and
R. J.
Bartlett
,
J. Chem. Phys.
134
,
184108
(
2011
).
47.
R.
Bartlett
,
M.
Musial
,
V.
Lotrich
, and
T.
Kuś
, “
The yearn to be hermitian
,” in
Recent Progress in Coupled Cluster Methods. Theory and Applications
, edited by
P.
Ĉársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Berlin
,
2010
), pp.
1
34
.
48.
N. C.
Handy
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
81
,
5031
(
1984
).
49.
J. E.
Rice
and
R. D.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
50.
R. J.
Bartlett
, “
Analytical evaluation of gradients in coupled-cluster and many-body perturbation theory
,” in
Geometrical Derivatives of Energy Surfaces and Molecular Properties
, edited by
P.
Jørgensen
and
J.
Simons
(
Reidel
,
Dordecht
,
1986
), pp.
35
61
.
51.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
52.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chim. Acta
75
,
111
(
1989
).
53.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
54.
H.
Koch
,
H. J. A.
Jensen
,
P.
Jørgensen
,
T.
Helgaker
,
G. E.
Scuseria
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
92
,
4924
(
1990
).
55.
K.
Hald
,
A.
Halkier
,
P.
Jørgensen
,
S.
Coriani
,
C.
Hättig
, and
T.
Helgaker
,
J. Chem. Phys.
118
,
2985
(
2003
).
56.
DALTON, a molecular electronic structure program, release 2.0 (
2005
); see http://www.kjemi.uio.no/software/dalton/dalton.html.
57.
T.
Helgaker
and
P.
Jørgensen
, “
Calculation of geometrical derivatives in molecular electronic structure theory
,” in
Methods in Computational Molecular Physics
, edited by
S.
Wilson
and
G. H. F.
Diercksen
(
Plenum
,
New York
,
1992
), pp.
353
421
.
58.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
59.
F. A.
Bulat
,
T.
Heaton-Burgess
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
127
,
174101
(
2007
).
60.
E.
Fermi
and
E.
Amaldi
,
Mem. Accad. Italia
6
,
119
(
1934
) [reproduced in E. Fermi, Collected Papers (Note e Memorie), Vol. 1 (1921–1938), loc. cit., art. No. 82 (http://www.archive.org/stream/collectedpapersn007155mbp#page/n655/mode/2up)].
61.
C. O.
Almbladh
and
A. C.
Pedroza
,
Phys. Rev. B
29
,
2322
(
1984
).
62.
A. C.
Pedroza
,
Phys. Rev. A
33
,
804
(
1986
).
63.
F.
Ayrasetiawan
and
M. J.
Stott
,
Phys. Rev. B
34
,
4401
(
1986
).
64.
Y.
Li
and
J. B.
Krieger
,
Phys. Rev. A
39
,
992
(
1989
).
65.
J.
Chen
,
R. O.
Esquivel
, and
M. J.
Stott
,
Philos. Mag. B
69
,
1001
(
1994
).
66.
C.
Filippi
,
C. J.
Umrigar
, and
X.
Gonze
,
Phys. Rev. A
54
,
4810
(
1996
).
67.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
1269
(
2002
).
68.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
125
,
081104
(
2006
).
69.
V. N.
Staroverov
,
G. E.
Scuseria
, and
E. R.
Davidson
,
J. Chem. Phys.
124
,
141103
(
2006
).
70.
A.
Hesselman
,
A. W.
Götz
,
F. D.
Sala
, and
A.
Görling
,
J. Chem. Phys.
127
,
054102
(
2007
).
71.
C.
Kollmar
and
M.
Filatov
,
J. Chem. Phys.
127
,
114104
(
2007
).
72.
D. P.
Joubert
,
J. Chem. Phys.
127
,
244104
(
2007
).
73.
C.
Kollmar
and
M.
Filatov
,
J. Chem. Phys.
128
,
064101
(
2008
).
74.
M. J. G.
Peach
,
J. A.
Kattirtzi
,
A. M.
Teale
, and
D. J.
Tozer
,
J. Phys. Chem. A
114
,
7179
(
2010
).
75.
V. N.
Glushkov
,
S. I.
Fesenko
, and
H. M.
Polatoglou
,
Theor. Chem. Acc.
124
,
365
(
2009
).
76.
A. K.
Theophilou
and
V. N.
Glushkov
,
J. Chem. Phys.
124
,
034105
(
2006
).
77.
P. O.
Widmark
,
P. A.
Malmqvist
, and
B.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
78.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
79.
ACES II (Quantum Theory Project, University of Florida), written by
J. S.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
M.
Nooijen
,
N.
Oliphant
,
S. A.
Perera
,
P. G.
Szalay
,
W. J.
Lauderdale
,
S. A.
Kucharski
,
S. R.
Gwaltney
,
S.
Beck
,
A.
Balková
,
D. E.
Bernholdt
,
K. K.
Baeck
,
P.
Rozyczko
,
H.
Sekino
,
C.
Hober
and
R. J.
Bartlett
. Containing contributions from vmol (J. Almlöf and P. R. Taylor); vprops (P. Taylor); abacus (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, and P. R. Taylor).
80.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
55
,
1200
(
1980
).
81.
J. C.
Slater
,
Quantum Theory of Molecules and Solids
,
The Self-Consistent Field for Molecules and Solids
Vol. 4 (
McGraw–Hill
,
New York
,
1974
).
82.
A.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
83.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
84.
K.
Jankowski
,
K.
Nowakowski
,
I.
Grabowski
, and
J.
Wasilewski
,
J. Chem. Phys.
130
,
164102
(
2009
).
85.
K.
Jankowski
,
K.
Nowakowski
,
I.
Grabowski
, and
J.
Wasilewski
,
Theor. Chem. Acc.
125
,
433
(
2010
).
86.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
E. R.
Davidson
,
F. A.
Parpia
, and
C. F.
Fischer
,
Phys. Rev. A
47
,
3649
(
1993
).
87.
V.
Sahni
and
M.
Levy
,
Phys. Rev. B
33
,
3869
(
1986
).
88.
E. K. U.
Gross
,
M.
Petersilka
, and
T.
Grabo
, “
Conventional quantum chemical correlation energy versus density-functional correlation energy
,” in
Chemical Applications of Density Functional Theory
, edited by
B. B.
Laird
,
R. B.
Ross
, and
T.
Ziegler
(
American Chemical Society
,
Washington, DC
,
1996
), Vol. 629, pp.
42
53
.
89.
A.
Savin
,
U.
Wedig
,
H.
Stoll
, and
H.
Preuss
,
Chem. Phys. Lett.
92
,
503
(
1982
).
90.
A.
Borgoo
,
O.
Scharf
,
G.
Gaigalas
, and
M.
Godefroid
,
Comput. Phys. Commun.
181
,
426
(
2010
).
91.
A. M.
Teale
and
D. J.
Tozer
,
Phys. Chem. Chem. Phys.
7
,
2991
(
2005
).
92.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
93.
M. J.
Allen
and
D. J.
Tozer
,
J. Chem. Phys.
117
,
11113
(
2002
).
94.
R. J.
Bartlett
,
I. V.
Schweigert
, and
V. F.
Lotrich
,
J. Mol. Struct.: THEOCHEM
771
,
1
(
2006
).
95.
D.
Bohm
and
D.
Pines
,
Phys. Rev.
92
,
609
(
1953
).
96.
M.
Gell-Mann
and
K. A.
Brueckner
,
Phys. Rev.
106
,
364
(
1957
).
97.
F.
Furche
,
J. Chem. Phys.
129
,
114105
(
2008
).
98.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
,
J. Chem. Phys.
129
,
231101
(
2008
).
99.
J.
Toulouse
,
W.
Zhu
,
J. G.
Ángyán
, and
A.
Savin
,
Phys. Rev. A
82
,
032502
(
2010
).
100.
J.
Harl
and
G.
Kresse
,
Phys. Rev. Lett.
103
,
056401
(
2009
).
101.
W.
Klopper
,
A. M.
Teale
,
S.
Coriani
,
T. B.
Pedersen
, and
T.
Helgaker
,
Chem. Phys. Lett.
510
,
147
(
2011
).
102.
R. J.
Bartlett
and
P.
Verma
, “
Increasing the applicability of DFT. III. Correlation potentials from the random phase approximation and beyond
,”
J. Chem. Phys.
(unpublished).
103.
X.
Ren
,
A.
Tkatchenko
,
P.
Rinke
, and
M.
Scheffer
,
Phys. Rev. Lett.
106
,
153003
(
2011
).
104.
R. J.
Bartlett
,
Chem. Phys. Lett.
484
,
1
(
2009
).
You do not currently have access to this content.