Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Møller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply “OD” and “OMP2” for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density matrices, the MO gradient, and the MO Hessian are reported both in spin-orbital and closed-shell spin-adapted forms. The Newton-Raphson algorithm is used for the optimization procedure using the MO gradient and Hessian. Further, orbital stability analyses are also carried out at correlated levels. The OD and OMP2 approaches are compared with the standard MP2, CCD, CCSD, and CCSD(T) methods. All these methods are applied to H2O, three diatomics, and the |${\rm O}_4^+$|O4+ molecule. Results demonstrate that the CCSD and OD methods give nearly identical results for H2O and diatomics; however, in symmetry-breaking problems as exemplified by |${\rm O}_4^+$|O4+, the OD method provides better results for vibrational frequencies. The OD method has further advantages over CCSD: its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, the computation of one-electron properties are easier because there is no response contribution to the particle density matrices, the variational optimized orbitals can be readily extended to allow inactive orbitals, it avoids spurious second-order poles in its response function, and its transition dipole moments are gauge invariant. The OMP2 has these same advantages over canonical MP2, making it promising for excited state properties via linear response theory. The quadratically convergent orbital-optimization procedure converges quickly for OMP2, and provides molecular properties that are somewhat different than those of MP2 for most of the test cases considered (although they are similar for H2O). Bond lengths are somewhat longer, and vibrational frequencies somewhat smaller, for OMP2 compared to MP2. In the difficult case of |${\rm O}_4^+$|O4+, results for several vibrational frequencies are significantly improved in going from MP2 to OMP2.

1.
K. A.
Brueckner
,
Phys. Rev.
96
,
508
(
1954
).
2.
R. K.
Nesbet
,
Phys. Rev.
109
,
1632
(
1958
).
3.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
4.
L. A.
Barnes
and
R.
Lindh
,
Chem. Phys. Lett.
223
,
207
(
1994
).
5.
J. F.
Stanton
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
5554
(
1992
).
6.
R. A.
Chiles
and
C. E.
Dykstra
,
J. Chem. Phys.
74
,
4544
(
1981
).
7.
C.
Hampel
,
K. A.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
8.
K.
Raghavachari
,
J. A.
Pople
,
E. S.
Replogle
,
M.
Head-Gordon
, and
N. C.
Handy
,
Chem. Phys. Lett.
167
,
115
(
1990
).
9.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
10.
G. E.
Scuseria
,
Chem. Phys. Lett.
226
,
251
(
1994
).
11.
R.
Kobayashi
,
N. C.
Handy
,
R. D.
Amos
,
G. W.
Trucks
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
95
,
6723
(
1991
).
12.
R.
Kobayashi
,
R. D.
Amos
, and
N. C.
Handy
,
Chem. Phys. Lett.
184
,
195
(
1991
).
13.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F.C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
14.
A. G. T.
a
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
044110
(
2008
).
15.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
16.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
,
J. Chem. Phys.
86
,
2881
(
1987
).
17.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
89
,
7382
(
1988
).
18.
T. J.
Lee
,
R.
Kobayashi
,
N. C.
Handy
, and
R. D.
Amos
,
J. Chem. Phys.
96
,
8931
(
1992
).
19.
R.
Kobayashi
,
H.
Koch
,
P.
Jørgensen
, and
T. J.
Lee
,
Chem. Phys. Lett.
211
,
94
(
1993
).
20.
R.
Kobayashi
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
100
,
1375
(
1994
).
21.
E. R.
Davidson
and
W. T.
Borden
,
J. Phys. Chem.
87
,
4783
(
1983
).
22.
W. D.
Allen
,
D. A.
Horner
,
R. L.
DeKock
,
R. B.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
133
,
11
(
1989
).
23.
T. D.
Crawford
,
T. J.
Lee
,
N. C.
Handy
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
9980
(
1997
).
24.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
25.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
26.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
27.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
28.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
29.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
30.
G. D.
Purvis
,
R.
Shepard
,
F. B.
Brown
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
23
,
835
(
1983
).
31.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
32.
A. P.L.
Rendell
,
G. B.
Backsay
,
N. S.
Hush
, and
N. C.
Handy
,
J. Chem. Phys.
87
,
5976
(
1987
).
33.
K.
Jankowski
,
K.
Rubiniec
, and
J.
Wasilewski
,
Chem. Phys. Lett.
343
,
365
(
2001
).
34.
M.
Head-Gordon
and
J. A.
Pople
,
J. Phys. Chem.
92
,
3063
(
1988
).
35.
L.
Adamowicz
,
W. D.
Laiding
, and
R. J.
Bartlett
,
Int. J. Quantum Chem. S.
18
,
244
(
1984
).
36.
37.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
38.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
39.
V.
Vanovschi
,
A. I.
Krylov
, and
P. G.
Wenthold
,
Theor. Chem. Acc.
120
,
45
(
2008
).
40.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
41.
E. S.
Nielsen
,
P.
Jørgensen
, and
J.
Oddershede
,
J. Chem. Phys.
73
,
6238
(
1980
).
42.
W. J.
Lauderdale
,
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
6606
(
1992
).
43.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
44.
L.
Adamowicz
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
6314
(
1987
).
45.
L.
Adamowicz
,
R. J.
Bartlett
, and
A. J.
Sadlej
,
J. Chem. Phys.
88
,
5749
(
1988
).
46.
47.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
, 1st ed. (
Cambridge University Press
,
New York
,
2009
), pp.
25
27
54
90
308
321
.
48.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
, 1st ed. (
Wiley
,
New York
,
2000
), pp.
86
89
488
489
701
734
.
49.
Psi4: An open-source ab initio electronic structure program,
Justin M.
Turney
,
Andrew C.
Simmonett
,
Robert M.
Parrish
,
Edward G.
Hohenstein
,
Francesco
Evangelista
,
Justin T.
Fermann
,
Benjamin J.
Mintz
,
Lori A.
Burns
,
Jeremiah J.
Wilke
,
Micah L.
Abrams
,
Nicholas J.
Russ
,
Matthew L.
Leininger
,
Curtis L.
Janssen
,
Edward T.
Seidl
,
Wesley D.
Allen
,
Henry F.
Schaefer
,
Rollin A.
King
,
Edward F.
Valeev
,
C.
David Sherrill
, and
T.
Daniel Crawford
, submitted to WIREs Comput. Mol. Sci., (
2010
).
50.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
P. G.
Szalay
,
R. J.
Bartlett
, with contributions from
A. A.
Auer
,
D. B.
Bernholdt
,
O.
Christiansen
,
M. E.
Harding
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
D.
Jonsson
,
J.
Jusélius
,
W. J.
Lauderdale
,
T.
Metzroth
,
C.
Michauk
,
D. R.
Price
,
K.
Ruud
,
F.
Schiffmann
,
A.
Tajti
,
M. E.
Varner
,
J.
Vázquez
, and the integral packages: molecule (
J.
Almlöf
and
P. R.
Taylor
), props (
P. R.
Taylor
), and abacus (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
).
51.
T. D.
Crawford
,
C. D.
Sherrill
,
E. F.
Valeev
,
J. T.
Fermann
,
R. A.
King
,
M. L.
Leininger
,
S. T.
Brown
,
C. L.
Janssen
,
E. T.
Seidl
,
J. P.
Kenny
, and
W. D.
Allen
,
J. Comp. Chem.
28
,
1610
(
2007
).
52.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T.B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
,
R. C.
Lochan
,
T.
Wang
,
G. J.O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T. V.
Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F.C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C. P.
Hsu
,
G.
Kedziora
,
R. Z.
Khaliullin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
,
J.
Kong
,
A. I.
Krylov
,
P. M.W.
Gill
,
M.
Head-Gordon
, Q-Chem, V. 3.1, Q-Chem, Inc., Pittsburgh,
P. A.
authors
for Version 3.1:
Z.
Gan
,
Y.
Zhao
,
N. E.
Schultz
,
D.
Truhlar
,
E.
Epifanovsky
,
M. O.A.
authors
for Version 3.2:
R.
Baer
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
C.-L.
Cheng
,
C.
Cramer
,
D.
Crittenden
,
A.
Ghysels
,
G.
Hawkins
,
C.
Kelley
,
W.
Kurlancheek
,
D.
Liotard
,
E.
Livshits
,
P.
Manohar
,
A.
Marenich
,
D.
Neuhauser
,
R.
Olson
,
M. A.
Rohrdanz
,
K. S.
Thanthiriwatte
,
A. J. W.
Thom
,
V.
Vanovschi
,
C. F.
Williams
,
Q.
Wu
, and
Z.-Q.
You
., q-chem 3.2, Q-Chem, Inc., Pittsburgh, PA (
2007
).
53.
Y.
Yamaguchi
,
I. L.
AIberts
,
J. D.
Goddard
, and
H. F.
Schaefer
,
Chem. Phys.
147
,
309
(
1990
).
54.
One can show that our MO Hessian equation will reduce MO Hessian expression of Yamaguchi et al (Ref. 53) in cases of SCF wavefunction. However, it should be noted that our closed-shell MO Hessian equation will reduce to, by definition, four times of the RHF MO Hessian of Yamaguchi et. al. The reason of this difference is the definition of the MO gradient. Our closed-shell MO gradient recovers all spin components (α and β contributions) and it reduces to four times of RHF Fock matrix, which is equivalent to the RHF MO gradient expression given by Chaban et al (Ref. 101). Since 4fai will be zero at convergence, one may also define the gradient as fai. Then, one can obtain the MO Hessian via first derivative of the MO gradient. Therefore, for exact comparison with our MO Hessian eigenvalues one need multiply eigenvalues which reported by Yamaguchi et al by a factor of four.
55.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
, 1st ed. (
Cambridge University Press
,
New York
,
2009
), pp.
54
90
.
56.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2000
).
57.
F. E.
Harris
,
H. J.
Monkhorst
, and
D. L.
Freeman
,
Algebraic and Diagrammatic Methods in Many-Fermion Theory
, 1st ed. (
Oxford University Press
,
New York
,
1992
), pp.
88
118
.
58.
R. J.
Bartlett
and
G. D.
Purvis
,
Int. J. Quantum Chem. S.
14
,
561
(
1978
).
59.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
60.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
103
,
3561
(
1995
).
61.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
116
,
1773
(
2001
).
62.
J.
Linderberg
and
Y.
Öhrn
,
Int. J. Quantum Chem.
12
,
161
(
1977
).
63.
E.
Dalgaard
and
P.
Jørgensen
,
J. Chem. Phys.
69
,
3833
(
1978
).
64.
R.
Shepard
,
Adv. Chem. Phys.
69
,
63
(
1987
).
65.
R.
Shepard
, in
Modern Electronic Structure Theory Part I
,
Advanced Series in Physical Chemistry
Vol. 2, edited by
D. R.
Yarkony
, 1st ed. (
World Scientific
,
London
,
1995
), pp.
345
458
.
66.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
,
J. Chem. Phys.
87
,
5361
(
1987
).
67.
The MO Hessian expression given in Eq. (37) can be used for any ab initio wavefunction. Only PDMs differ from the method to method. For a general case, if the energy is computed as
$E = \langle \bar{\Psi } \hat{H} \Psi \rangle$
E=Ψ¯ĤΨ
, then one can define OPDM as
$\gamma _{pq} = \frac{1}{2} \hat{P}_{+}(pq) \langle \bar{\Psi } \hat{p}^{\dagger } \hat{q} \Psi \rangle$
γpq=12P̂+(pq)Ψ¯p̂q̂Ψ
and TPDM as
$\Gamma _{pqrs} = \frac{1}{8} \hat{P}_{+}(pq,rs) \langle \bar{\Psi } \hat{p}^{\dagger } \hat{q}^{\dagger } \hat{s} \hat{r} \Psi \rangle$
Γpqrs=18P̂+(pq,rs)Ψ¯p̂q̂ŝr̂Ψ
. Where
$\bar{\Psi }$
Ψ¯
and Ψ can be the same or different.
68.
M. T.
Heat
,
Scientific Computing: An Introductory Survey
, 2nd ed. (
McGraw-Hill
,
Boston
,
2002
), pp.
121
136
472
476
.
69.
In addition to the full NR method, we have also implemented the augmented Hessian algorithm (Refs. 64 and 102, and 103) for the MO optimization procedure. The augmented Hessian algorithm also has quadratic convergence and it is more reliable than the NR method in problematic cases. However, in our test cases we observed that SCF orbitals provide a good initial guess for OD and OMP2 methods when all orbitals are correlated, and the NR method converges to a minimum without any difficulty. On the other hand, in the case of quadratically convergent valence optimized coupled cluster doubles (VOD), the initial MO Hessian may include negative eigenvalue(s). Then, one should either apply simple level-shifting to the MO Hessian or it is better to use augmented Hessian algorithm.
70.
R. J.
Bartlett
and
M.
Musial
,
Rev. Mod. Phys.
79
,
291
(
2007
).
71.
W. J.
Lauderdale
,
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
187
,
21
(
1991
).
72.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
7825
(
1992
).
73.
R. J.
Bartlett
and
J.
Noga
,
Chem. Phys. Lett.
150
,
29
(
1988
).
74.
T. D.
Crawford
, Ph.d. dissertation,
The University of Georgia
,
1996
, pp.
60
77
.
75.
DIATOMIC is a C++ program written for geometry optimization, frequency analysis, and spectroscopic constants computation for diatomic molecules via numerical derivatives by
J. M.
Turney
, Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, 30602, USA, (
2010
).
76.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chem. Acc.
28
,
213
(
1973
).
77.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
78.
K.
Raghavachari
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
79.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
80.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
81.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
82.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
83.
T. H.
Dunning
and
P. J.
Hay
, in
Methods of Electronic Structure Theory
,
Modern Theoretical Chemistry
Vol. 2, edited by
H. F.
Schaefer
(
Plenum
,
New York
,
1977
), pp.
1
27
.
84.
T. H.
Dunning
,
J. Chem. Phys.
55
,
716
(
1971
).
85.
K. N.
Kudin
,
G. E.
Scuseria
, and
E.
Cancés
,
J. Chem. Phys.
116
,
8255
(
2002
).
86.
A. R.
Hoy
and
P. R.
Bunker
,
J. Mol. Spec.
74
,
1
(
1979
).
87.
V.
Wathelet
,
B.
Champagné
,
D. H.
Mosley
,
E. A.
Perpéte
, and
J. M.
André
,
J. Mol. Struct. (THEOCHEM)
425
,
95
(
1998
).
88.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure
,
Constants of Diatomic Molecules
, Vol. 4 (
Van Nostrand
,
Princeton
,
1979
).
89.
T. J.
Lee
,
J. E.
Rice
,
G. E.
Scuseria
, and
H. F.
Schaefer
,
Theor. Chem. Acc.
75
,
81
(
1989
).
90.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem. S.
23
,
199
(
1989
).
91.
D.
Jayatilaka
and
T. J.
Lee
,
J. Chem. Phys.
98
,
9734
(
1993
).
92.
B. O.
Roos
,
Adv. Chem. Phys.
69
,
399
(
1987
).
93.
W. E.
Thompson
and
M. E.
Jacox
,
J. Chem. Phys.
91
,
3826
(
1989
).
94.
R.
Lindh
and
L. A.
Barnes
,
J. Chem. Phys.
100
,
224
(
1994
).
95.
E. R.
Davidson
and
W. T.
Borden
,
J. Chem. Phys.
87
,
4783
(
1983
).
96.
R. S.
Grev
,
I. L.
Alberts
, and
H. F.
Schaefer
,
J. Phys. Chem.
94
,
3379
(
1990
).
97.
Y.
Xie
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
7615
(
1996
).
98.
T. D.
Crawford
,
J. F.
Stanton
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
10626
(
1997
).
99.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vzquez
,
F.
Wang
,
J. D.
Watts
and the integral packages molecule (J. Almlöf and P. R. Taylor), props (P.R. Taylor), abacus (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
.
100.
M. E.
Jacox
and
W. E.
Thompson
,
J. Chem. Phys.
100
,
750
(
1994
).
101.
G.
Chaban
,
M. W.
Schmidt
, and
M. S.
Gordon
,
Theor. Chem. Acc.
97
,
88
(
1997
).
102.
H.-J.
Werner
,
Adv. Chem. Phys.
69
,
1
(
1987
).
103.
B. O.
Roos
, in
Methods in Computational Molecular Physics
, edited by
G. H. F.
Diercksen
(
D. Reidel
,
Dordrecht
,
1983
), pp.
161
188
.
You do not currently have access to this content.