Collapsed polymers in solution represent an oft-overlooked area of polymer physics, however recent studies of biopolymers in the bloodstream have suggested that the physics of polymer globules are not only relevant but could potentially lead to powerful new ways to manipulate single molecules using fluid flows. In the present article, we investigate the behavior of a collapsed polymer globule under the influence of linear combinations of shear and elongational flows. We generalize the theory of globule-stretch transitions that has been developed for the specific case of simple shear and elongational flows to account for behavior in arbitrary flow fields. In particular, we find that the behavior of a globule in flow is well represented by a two-state model wherein the critical parameters are the transition probabilities to go from a collapsed to a stretched state Pgs and vice versa Psg. The collapsed globule to stretch transition is described using a nucleation protrusion mechanism, and the reverse transition is described using either a tumbling or a relaxation mechanism. The magnitudes of Pgs and Psg govern the state in which the polymer resides; for Pgs ≈ 0 and Psg ≈ 1 the polymer is always collapsed, for Pgs ≈ 0 and Psg ≈ 0 the polymer is stuck in either the collapsed or stretched state, for Pgs ≈ 1 and Psg ≈ 0 the polymer is always stretched, and for Pgs ≈ 1 and Psg ≈ 1 the polymer undergoes tumbling behavior. These transition probabilities are functions of the flow geometry, and we demonstrate that our theory quantitatively predicts globular polymer conformation in the case of mixed two-dimensional flows, regardless of orientation and representation, by comparing theoretical results to Brownian dynamics simulations. Generalization of the theory to arbitrary three-dimensional flows is discussed as is the incorporation of this theory into rheological equations.

1.
P. G.
de Gennes
,
J. Chem. Phys.
60
,
5030
(
1974
).
2.
S.
Liu
,
B.
Ashok
, and
M.
Muthukumar
,
Polymer
45
,
1383
(
2004
).
3.
I. M.
Neelov
,
D. B.
Adolf
,
A. V.
Lyulin
, and
G. R.
Davies
,
J. Chem. Phys.
117
,
4030
(
2002
).
4.
A.
Buguin
and
F.
Brochard-Wyart
,
Macromolecules
29
,
4937
(
1996
).
5.
R. G.
Larson
,
J. Rheol.
49
,
1
(
2005
).
6.
D.
Smith
,
H.
Babcock
, and
S.
Chu
,
Science
1724
(
1999
).
7.
T. T.
Perkins
,
D. E.
Smith
, and
S.
Chu
,
Science
276
,
2016
(
1997
).
8.
J. S.
Hur
,
E. S. G.
Shaqfeh
, and
R. G.
Larson
,
J. Rheol.
44
,
713
(
2000
).
9.
R. M.
Jendrejack
,
J. J.
de Pablo
, and
M. D.
Graham
,
J. Chem. Phys.
116
,
7752
(
2002
).
10.
J. M.
Kim
and
P. S.
Doyle
,
Lab Chip
7
,
213
(
2007
).
11.
J. M.
Kim
and
P. S.
Doyle
,
J. Chem. Phys.
125
,
074906
(
2006
).
12.
A.
Alexander-Katz
,
M. F.
Schneider
,
S. W.
Schneider
,
A.
Wixforth
, and
R. R.
Netz
,
Phys. Rev. Lett.
97
,
138101
(
2006
).
13.
A.
Alexander-Katz
and
R. R.
Netz
,
Macromolecules
41
,
3363
(
2008
).
14.
A.
Alexander-Katz
and
R. R.
Netz
,
EPL
80
,
18001
(
2007
).
15.
S. W.
Schneider
,
S.
Nuschele
,
A.
Wixforth
,
C.
Gorzelanny
,
A.
Alexander-Katz
,
R. R.
Netz
, and
M. F.
Schneider
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
7899
(
2007
).
16.
C. E.
Sing
and
A.
Alexander-Katz
,
Macromolecules
43
,
3532
(
2010
).
17.
N.
Hoda
and
S.
Kumar
,
J. Chem. Phys.
16
,
164907
(
2008
).
18.
S.
Goto
,
D. R.
Salomon
,
Y.
Ikeda
, and
Z. M.
Ruggeri
,
J. Biol. Chem.
270
,
23352
(
1995
).
19.
W. S.
Nesbitt
,
E.
Westein
,
F. J.
Tovar-Lopez
,
E.
Tolouei
,
A.
Mitchell
,
J.
Fu
,
J.
Carberry
,
A.
Fouras
, and
S. P.
Jackson
,
Nat. Med.
15
,
665
U146
(
2009
).
20.
P.
Szymczak
and
M.
Cieplak
,
J. Chem. Phys.
127
,
155106
(
2007
).
21.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
22.
H.
Yamakawa
,
J. Chem. Phys.
53
,
436
(
2003
).
23.
N. J.
Woo
and
E. S. G.
Shaqfeh
,
J. Chem. Phys.
119
,
2908
(
2003
).
24.
B. D.
Hoffman
and
E. S. G.
Shaqfeh
,
J. Rheol.
51
,
947
(
2007
).
25.
R. G.
Larson
and
J. J.
Magda
,
Marcomolecules
22
,
3004
(
1989
).
26.
Z. M.
Ruggeri
and
G. L.
Mendolicchio
,
Circ. Res.
100
,
1673
(
2007
).
27.
H.
Chen
and
A.
Alexander-Katz
,
Biophys. J.
100
,
174
(
2011
).
28.
X.
Zhang
,
K.
Halvorsen
,
C.-Z.
Zhang
,
W. P.
Wong
, and
T. A.
Springer
,
Science
324
,
1330
(
2009
).
29.
C. E.
Sing
and
A.
Alexander-Katz
,
Biophys. J.
98
,
L35
(
2010
).
30.
M.
Doi
and
S.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
New York
,
1986
).
You do not currently have access to this content.