In linear control, balanced truncation is known as a powerful technique to reduce the state-space dimension of a system. Its basic principle is to identify a subspace of jointly easily controllable and observable states and then to restrict the dynamics to this subspace without changing the overall response of the system. This work deals with a first application of balanced truncation to the control of open quantum systems which are modeled by the Liouville-von Neumann equation within the Lindblad formalism. Generalization of the linear theory has been proposed to cope with the bilinear terms arising from the coupling between the control field and the quantum system. As an example we choose the dissipative quantum dynamics of a particle in an asymmetric double well potential driven by an external control field, monitoring population transfer between the potential wells as a control target. The accuracy of dimension reduction is investigated by comparing the populations obtained for the truncated system versus those for the original system. The dimension of the model system can be reduced very efficiently where the degree of reduction depends on temperature and relaxation rate.

1.
S. A.
Rice
and
M.
Zhao
,
Optical Control of Molecular Dynamics
(
Wiley
,
New York
,
2000
).
2.
M.
Shapiro
and
P.
Brumer
,
Principles of Quantum Control of Molecular Processes
(
Wiley
,
New York
,
2003
).
3.
Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic Scale Resolution
, edited by
V.
Sundström
,
Nobel symposium
Vol.
101
(
Imperial College Press
,
London
,
1997
).
4.
Analysis and Control of Ultrafast Photoinduced Reactions
, edited by
O.
Kühn
and
L.
Wöste
(
Springer
,
Berlin
,
2007
).
5.
M.
Shapiro
and
P.
Brumer
,
J. Chem. Phys.
84
,
4103
(
1986
).
6.
D. J.
Tannor
,
R.
Kosloff
, and
S. A.
Rice
,
J. Chem. Phys.
85
,
5805
(
1986
).
7.
A. P.
Peirce
and
M. A.
Dahleh
,
Phys. Rev. A
37
,
4950
(
1988
).
8.
A. H.
Zewail
,
Femtochemistry: Ultrafast Dynamics of the Chemical Bond
(
World Scientific
,
Singapore
,
1994
).
9.
Femtosecond Chemistry
, edited by
J.
Manz
and
L.
Wöste
, 2nd ed. (
Wiley VCH Verlag
,
Weinheim
,
1995
).
10.
V.
Bonačić-Koutecký
and
R.
Mitrić
,
Chem. Rev.
105
,
11
(
2005
).
11.
R.
Kosloff
,
S.
Rice
,
P.
Gaspard
,
S.
Tersigni
, and
D.
Tannor
,
Chem. Phys.
139
,
201
(
1989
).
12.
D. J.
Tannor
and
V. A.
Kazakov
, in
Time-Dependent Quantum Molecular Dynamics
, edited by
J.
Broeckhove
and
L.
Lathouwers
,
NATO Advanced Research Workshop
(
Plenum
,
New York
,
1992
), pp.
347
360
.
13.
R.
Judson
and
H.
Rabitz
,
Phys. Rev. Lett.
68
,
1500
(
1992
).
14.
W. S.
Warren
,
H.
Rabitz
, and
M.
Dahleh
,
Science
259
,
1581
(
1993
).
15.
W.
Zhu
,
J.
Botina
, and
H.
Rabitz
,
J. Chem. Phys.
108
,
1953
(
1998
).
16.
U.
Weiß
,
Quantum Dissipative Systems
,
Series in Modern Condensed Matter Physics
Vol.
10
(
World Scientific
,
Singapore
,
1999
).
17.
V.
May
and
O.
Kühn
, in
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley VCH Verlag
,
Weinheim
,
2004
) pp.
81
194
.
18.
T.
Gerdts
and
U.
Manthe
,
J. Chem. Phys.
106
,
3017
(
1997
).
19.
A.
Raab
,
I.
Burghardt
, and
H.-D.
Meyer
,
J. Chem. Phys.
111
,
8759
(
1999
).
20.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
21.
M.
Nest
and
H.-D.
Meyer
,
J. Chem. Phys.
119
,
24
(
2003
).
22.
B.
Wolfseder
and
W.
Domcke
,
Chem. Phys. Lett.
235
,
370
(
1995
).
23.
H.-P.
Breuer
,
W.
Huber
, and
F.
Petruccione
,
Comput. Phys. Commun.
104
,
46
(
1997
).
24.
M.
Khasin
and
R.
Kosloff
,
Phys. Rev. A
78
,
012321
(
2008
).
25.
G.
Füchsel
,
T.
Klamroth
,
J. C.
Tremblay
, and
P.
Saalfrank
,
Phys. Chem. Chem. Phys.
12
,
14082
(
2010
).
26.
C.
Mullis
and
R.
Roberts
,
IEEE Trans. Circuits Syst.
23
,
551
(
1976
).
27.
B.
Moore
,
IEEE Trans. Autom. Control
AC-26
,
17
(
1981
).
28.
K.
Glover
,
Int. J. Control
39
,
1115
(
1984
).
29.
Y.
Liu
and
B.
Anderson
,
Int. J. Control
50
,
1379
(
1989
).
30.
S.
Gugercin
and
A.
Antoulas
,
Int. J. Control
77
,
748
(
2004
).
31.
T.
Reis
and
E.
Virnik
,
SIAM J. Control Optim.
48
,
2600
(
2009
).
32.
C.
Hartmann
,
V.-M.
Vulcanov
, and
C.
Schütte
,
Multiscale Model. Simul.
8
,
1348
(
2010
).
33.
C.
Hartmann
, “
Balanced model reduction of partially-observed Langevin processes: An averaging principle
,”
Math. Comput. Model. Dyn. Syst.
(submitted).
34.
C.
Hartmann
, in
Proceedings of MATHMOD 09
, ARGESIM Report No. 35, edited by
I.
Troch
and
F.
Breitenecker
(
2009
), pp.
1244
1255
.
36.
Z.
Bai
and
D.
Skoogh
,
Numer. Linear Algebra Appl.
415
,
406
(
2006
).
37.
P.
Benner
and
T.
Damm
,
SIAM J. Control Optim.
49
,
686
(
2011
).
38.
L.
Zhang
and
J.
Lam
,
Automatica
38
,
205
(
2002
).
39.
M.
Ottobre
and
G. A.
Pavliotis
,
Nonlinearity
24
,
1629
(
2011
).
40.
Z.
Ma
,
C. W.
Rowley
, and
G.
Tadmor
,
IEEE Trans. Autom. Control
55
,
469
(
2010
).
41.
C.
Hartmann
,
A.
Zueva
, and
B.
Schäfer-Bung
, “
Balanced model reduction of bilinear systems with applications to positive systems
,” SIAM J. Control Optim. (submitted).
42.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Oxford
,
2002
).
43.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
44.
M.
Nest
and
P.
Saalfrank
,
Chem. Phys.
268
,
65
(
2001
).
45.
I.
Andrianov
and
P.
Saalfrank
,
J. Chem. Phys.
124
,
034710
(
2006
).
46.
W.
Gray
and
J.
Mesko
, in
Preprints of the 4th IFAC Nonlinear Control Systems Design Symposium
, edited by
H. J. C.
Huijberts
(
International Federation of Automatic Control
,
Enschede, Netherlands
,
1998
), pp.
103
108
.
47.
S. W.
Greenwald
, Local Dimension Reduction of a Dissipative Quantum Control System, Diploma thesis,
Freie Universität Berlin
,
2008
.
48.
J. M. A.
Scherpen
,
Syst. Control Lett.
21
,
143
(
1993
).
49.
A.
Antoulas
,
Approximation of Large-Scale Dynamical Systems
(
SIAM
,
Philadelphia
,
2005
).
50.
Strictly speaking, the term transfer function refers to the input-output map y(u; x0 = 0) in the frequency domain (i.e., in Fourier space) rather than in the time domain, but we will ignore this subtlety for the time being.
51.
S.
Beyvers
and
P.
Saalfrank
,
J. Chem. Phys.
128
,
074104
(
2008
).
52.
A.
Isidori
,
IEEE Trans. Autom. Control
18
,
626
(
1973
).
53.
C. W.
Rowley
,
Int. Int. J. Bifurcation Chaos Appl. Sci. Eng.
15
,
997
(
2005
).
54.
R.
Meyer
,
J. Chem. Phys.
52
,
2053
(
1970
).
55.
C. C.
Marston
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
91
,
3571
(
1989
).
56.
K.
Drese
and
M.
Holthaus
,
Eur. Phys. J. D
5
,
119
(
1999
).
57.
I.
Horenko
,
B.
Schmidt
, and
C.
Schütte
,
J. Chem. Phys
115
,
5733
(
2001
).
58.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
59.
H.
Schneider
,
Numer. Math.
7
,
11
(
1965
).
60.
E.
Wachspress
,
Appl. Math. Lett.
1
,
87
(
1988
).
61.
T.
Damm
,
Numer. Linear Algebra Appl.
15
,
853
(
2008
).
62.
M.
Condon
and
R.
Ivanov
,
COMPEL: Int. J. Comput. Math. Elec.
24
,
202
(
2005
).
63.
T.
Ichiye
and
M.
Karplus
,
Proteins
11
,
205
(
1991
).
64.
A.
Amadei
,
A. B.
Linssen
, and
H. J.
Berendsen
,
Proteins
17
,
412
(
1993
).
65.
S.
Lall
,
J. E.
Marsden
, and
S.
Glavaški
,
Int. J. Robust Nonlinear Control
12
,
519
(
2002
).
66.
O. F.
Lange
and
H.
Grubmüller
,
Proteins
62
,
1053
(
2006
).
67.
P.
Holmes
,
J.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
Cambridge, England
,
1996
).
68.
B.
Øksendal
,
Stochastic Differential Equations: An Introduction With Applications
(
Springer
,
Berlin
,
2003
).
69.
T.
Damm
,
Rational Matrix Equations in Stochastic Control
,
LNICS
, Vol.
297
(
Springer
,
2004
).
You do not currently have access to this content.