The self-assembly behavior of ABA coil-rod-coil triblock copolymers in a selective solvent was studied by a Brownian molecular dynamics simulation method. It was found that the rod midblock plays an important role in the self-assembly of the copolymers. With a decrease in the segregation strength, ɛRR, of rod pairs, the aggregate structure first varies from a smecticlike disk shape to a long twisted string micelle and then to small aggregates. The influence of the block length and the asymmetry of the triblock copolymer on the phase behavior were studied and the corresponding phase diagrams were mapped. It was revealed that the variation of these parameters has a profound effect on microstructure. The simulation results are consistent with experimental results. Compared to rod-coil diblock copolymers, the coil-rod-coil triblock copolymers has a larger entropy penalty associated with the interfacial grafting density of the aggregate, leading to a higher ɛRR value for structural transitions.

1.
S. A.
Jenekhe
and
X. L.
Chen
,
Science
283
,
372
(
1999
).
2.
J. T.
Chen
,
E. L.
Thomas
,
C. K.
Ober
, and
G. P.
Mao
,
Science
273
,
343
(
1996
).
3.
S. I.
Stupp
,
V.
LeBonheur
,
K.
Walker
,
L. S.
Li
,
K. E.
Huggins
,
M.
Keser
, and
A.
Amstutz
,
Science
276
,
384
(
1997
).
4.
J. M. L. J.
Cornelissen
,
M.
Fischer
,
N. M. J. A.
Sommerdijk
, and
R. M. J.
Nolte
,
Science
280
,
1427
(
1998
).
5.
F.
Checot
,
S.
Lecommandoux
,
Y.
Gnanou
, and
H. A.
Klok
,
Angew. Chem., Int. Ed.
41
,
1339
(
2002
).
6.
A. N.
Semenov
,
Mol. Cryst. Liq. Cryst.
209
,
191
(
1991
).
7.
D. R. M.
Williams
and
G. H.
Fredrickson
,
Macromolecules
25
,
3561
(
1992
).
8.
M.
Muller
and
M.
Schick
,
Macromolecules
29
,
8900
(
1996
).
9.
M. W.
Matsen
and
C.
Barrett
,
J. Chem. Phys.
109
,
4108
(
1998
).
10.
J.
Lin
,
S.
Lin
,
L.
Zhang
, and
T.
Nose
,
J. Chem. Phys.
130
,
094907
(
2009
).
11.
L.
Liu
,
J. K.
Kim
, and
M.
Lee
,
ChemPhysChem
9
,
1585
(
2008
).
12.
M.
Lee
,
D. W.
Lee
, and
B. K.
Cho
,
J. Am. Chem. Soc.
120
,
13258
(
1998
).
13.
A.
de Cuendias
,
E.
Igarboure
,
S.
Lecommandoux
,
E.
Cloutet
, and
H.
Cramail
,
J. Polym. Sci., Part A: Polym. Chem.
46
,
4602
(
2008
).
14.
C. H.
Lin
,
Y. C.
Tung
,
J.
Ruokolainen
,
R.
Mezzenga
, and
W. C.
Chen
,
Macromolecules
41
,
8759
(
2008
).
15.
L.
Bu
,
Y.
Qu
,
D.
Yan
,
Y.
Geng
, and
F.
Wang
,
Macromolecules
42
,
1580
(
2009
).
16.
M.
Knaapila
,
M. V.
Garamus
,
L.
Almasy
,
J. S.
Pang
,
M.
Forster
,
A.
Gutacker
,
U.
Scherf
, and
A. P.
Monkman
.
J. Phys. Chem. B
112
,
16415
(
2008
).
17.
L.
Rubatat
,
X.
Kong
,
S. A.
Jenekhe
,
J.
Ruokolainen
,
M.
Hojeij
, and
R.
Mezzenga
,
Macromolecules
41
, 1
846
(
2008
).
18.
J. E.
Yang
,
S.
Samal
,
T.
Higashihara
,
K.
Sugiyama
,
N.
Haraguchi
,
A.
Matsuo
,
A.
Hirao
, and
J. S.
Lee
,
Macromolecules
39
,
3038
(
2006
).
19.
K.
Li
,
L.
Guo
,
Z.
Liang
,
P.
Thiyagarajan
, and
Q.
Wang
,
J. Polym. Sci., Part A: Polym. Chem.
43
,
6007
(
2005
).
20.
L.
Huang
,
J.
Hu
,
L.
Lang
,
X.
Chen
,
Y.
Wei
, and
X.
Jing
,
Macromol. Rapid Commun.
28
,
1559
(
2007
).
21.
L.
Huang
,
J.
Hu
,
L.
Lang
,
X.
Zhuang
,
X.
Chen
,
Y.
Wei
, and
X.
Jing
,
Macromol. Rapid Commun.
29
,
1242
(
2008
).
22.
X.
Li
,
Y.
Liu
,
L.
Wang
,
M.
Deng
, and
H.
Liang
,
Phys. Chem. Chem. Phys.
11
,
4051
(
2009
).
23.
X.
Li
,
I. V.
Pivkin
,
H.
Liang
, and
G. E.
Karniadakis
,
Macromolecules
42
,
3195
(
2009
).
24.
R.
Wang
,
P.
Tang
,
F.
Qiu
, and
Y. L.
Yang
,
J. Phys. Chem.
109
,
17120
(
2005
).
25.
C.
Chaibundit
,
W.
Mingvanish
,
S. C.
Turner
,
S. M.
Mai
,
J.
Patrick
,
A.
Fairclough
,
A. J.
Ryan
,
M. W.
Matsen
, and
C.
Booth
,
Macromol. Rapid Commun.
21
,
964
(
2000
).
26.
S. H.
Kim
and
W. H.
Jo
,
Macromolecules
34
,
7210
(
2001
).
27.
T.
Aoyagi
,
T.
Honda
, and
M.
Doi
,
J. Chem. Phys.
117
,
8153
(
2002
).
28.
A.
AlSunaidi
,
W. K.
den Otter
, and
J. H. R.
Clarke
,
Philos. Trans. R. Soc. London, Ser. A
362
,
1773
(
2004
).
29.
A.
AlSunaidi
,
W. K.
den Otter
, and
J. H. R.
Clarke
,
J. Chem. Phys.
130
,
124910
(
2009
).
30.
J. Z.
Chen
,
C. X.
Zhang
,
Z. Y.
Sun
,
L. J.
An
, and
Z.
Tong
,
J. Chem. Phys.
127
,
024105
(
2007
).
31.
J.
Song
,
T.
Shi
,
Y.
Li
,
J.
Chen
, and
L. J.
An
,
J. Chem. Phys.
129
,
054906
(
2008
).
32.
M. A.
Horsch
,
Z. L.
Zhang
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
95
,
056105
(
2005
).
33.
M. A.
Horsch
,
Z. L.
Zhang
, and
S. C.
Glotzer
,
J. Chem. Phys.
125
,
184903
(
2006
).
34.
M. A.
Horsch
,
Z. L.
Zhang
, and
S. C.
Glotzer
,
Soft Matter
6
,
945
(
2010
).
35.
N.
Yoshinaga
and
K.
Yoshikawa
,
J. Chem. Phys.
127
,
044902
(
2007
).
36.
L.
He
,
L.
Zhang
,
Y.
Ye
, and
H.
Liang
,
J. Phys. Chem. B
114
,
7189
(
2010
).
37.
S.
Lin
,
N.
Numasawa
,
T.
Nose
, and
J.
Lin
,
Macromolecules
40
,
1684
(
2007
).
38.
S.
Lin
,
X.
He
,
Y.
Li
,
J.
Lin
, and
T.
Nose
,
J. Phys. Chem. B
113
,
13926
(
2009
).
39.
See http://octa.jp for the description of OCTA software.
40.
S.
Lin
,
N.
Numasawa
,
T.
Nose
, and
J.
Lin
,
Mol. Cryst. Liq. Cryst.
466
,
53
(
2007
).
41.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
42.
See supplementary material at http://dx.doi.org/10.1063/1.3606396 for aggregate structures formed by A6B6A6 coil-rod-coil triblock copolymer system with various chain numbers.
43.
M.
Lee
,
B.
Cho
,
Y.
Jang
, and
W.
Zin
,
J. Am. Chem. Soc.
122
,
7449
(
2000
).
44.
C.
Sung
,
L.
Kung
,
C.
Hsu
,
T.
Lin
, and
R.
Ho
,
Chem. Mater.
18
,
352
(
2006
).
45.
J. V.
Selinger
,
M. S.
Spector
, and
J. M.
Schnur
,
J. Phys. Chem. B
105
,
7158
(
2001
).
46.
J. V.
Selinger
,
F. C.
MacKintosh
, and
J. M.
Schnur
,
Phys. Rev. E
53
,
3804
(
1996
).
47.
J. V.
Selinger
and
J. M.
Schnur
,
Phys. Rev. Lett.
71
,
4091
(
1993
).
48.
Y. M.
Lvov
,
R. R.
Price
,
J. V.
Selinger
,
A.
Singh
,
M. S.
Spector
, and
J. M.
Schnur
,
Langmuir
16
,
5932
(
2000
).
49.
M. S.
Spector
,
J. V.
Selinger
,
A.
Singh
,
J. M.
Rodriguez
,
R. R.
Price
, and
J. M.
Schnur
,
Langmuir
14
,
3493
(
1998
).
50.
R. L. B.
Selinger
,
J. V.
Selinger
,
A. P.
Malanoski
, and
J. M.
Schnur
,
Phys. Rev. Lett.
93
,
158103
(
2004
).
51.
T. D.
Nguyen
and
S. C.
Glotzer
,
Small
5
,
2092
(
2009
).
52.
L.
Li
,
H.
Jiang
,
B. W.
Messmore
,
S. R.
Bull
, and
S. I.
Stupp
,
Angew. Chem., Int. Ed.
46
,
5873
(
2007
).
53.
I. C.
Riegel
,
F. M.
de Bittencourt
,
O.
Terrau
,
A.
Eisenberg
,
C. L.
Petzhold
, and
D.
Samios
,
Pure Appl. Chem.
76
,
123
(
2004
).
54.
R.
Adhikari
,
T. A.
Huy
,
M.
Buschnakowski
,
G. H.
Michler
, and
K.
Knoll
,
New J. Phys.
6
,
28
(
2004
).
55.
M. W.
Maten
,
J. Chem. Phys.
113
,
5539
(
2000
).
56.
S. D.
Smith
,
M. W.
Hamersky
,
M. K.
Bowman
,
K. Ø.
Rasmussen
, and
R. J.
Spontak
,
Langmuir
22
,
6465
(
2006
).
57.
A.
Soldera
,
Y.
Qi
, and
W. T.
Capehart
,
J. Chem. Phys.
130
,
064902
(
2009
).
58.
A.
Halperin
,
Macromolecules
23
,
2724
(
1990
).

Supplementary Material

You do not currently have access to this content.