Excitation dynamics of various light harvesting systems have been investigated with many theoretical methods including various non-Markovian descriptions of dissipative quantum dynamics. It is typically assumed that each excited state is coupled to an independent thermal environment, i.e., that fluctuations in different environments are uncorrelated. Here the assumption is dropped and the effect of correlated bath fluctuations on excitation transfer is investigated. Using the hierarchy equations of motion for dissipative quantum dynamics it is shown for models of the B850 bacteriochlorophylls of LH2 that correlated bath fluctuations have a significant effect on the LH2 → LH2 excitation transfer rate. It is also demonstrated that inclusion of static disorder is crucial for an accurate description of transfer dynamics.

1.
R. S.
Knox
, in
Primary Processes of Photosynthesis
, edited by
J.
Barber
(
Elsevier
,
Amsterdam
,
1977
), pp.
55
97
.
2.
K.
Sauer
, in
Bioenergetics of Photosynthesis
, edited by
Govindjee
(
Academic
,
New York
,
1975
), pp.
115
181
.
3.
A. M.
Hawthornthwaite
and
R. J.
Cogdell
, in
Chlorophylls
, edited by
H.
Scheer
(
CRC Press
,
Boca Raton
,
1991
), pp.
493
528
.
4.
H.
Zuber
and
R.
Cogdell
, in
Anoxygenic Photosynthetic Bacteria
, edited by
R.
Blankenship
,
M.
Madigan
, and
C.
Bauer
(
Kluwer Academic
,
Dordrecht
,
1995
), pp.
315
348
.
5.
D.
Xu
and
K.
Schulten
,
Chem. Phys.
182
,
91
(
1994
).
6.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
131
,
225101
(
2009
).
7.
M.
Sener
,
J.
Strumpfer
,
J. A.
Timney
,
A.
Freiberg
,
C. N.
Hunter
, and
K.
Schulten
,
Biophys. J.
99
,
67
(
2010
).
8.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
9.
A.
Damjanović
,
I.
Kosztin
,
U.
Kleinekathoefer
, and
K.
Schulten
,
Phys. Rev. E
65
,
031919
(
2002
).
10.
I.
Kosztin
and
K.
Schulten
,
Biophysical Techniques in Photosynthesis II
,
Advances in Photosynthesis and Respiration
Vol.
26
, edited by
T.
Aartsma
and
J.
Matysik
(
Springer
,
Dordrecht
,
2008
), pp.
445
464
.
11.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
131
,
105106
(
2009
).
12.
A.
Nazir
,
Phys. Rev. Lett.
103
,
146404
(
2009
).
13.
H.
Lee
,
Y.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
(
2007
).
14.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.
Ahn
,
T.
Mancal
,
Y.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
15.
T.
Förster
,
Ann. Phys.
2
,
55
(
1948
).
16.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
17.
H.
Haken
and
G.
Strobl
,
Z. Phys. A
262
,
135
(
1973
).
18.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
1199
(
1989
).
19.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
282
,
163
(
2002
).
20.
T.
Renger
and
R. A.
Marcus
,
J. Chem. Phys.
116
,
9997
(
2002
).
21.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
Phys. Rev. Lett.
92
,
218301
(
2004
).
22.
O.
Kühn
and
V.
Sundström
,
J. Chem. Phys.
107
,
4154
(
1997
).
23.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
,
137
(
2001
).
24.
O.
Kühn
and
Y.
Tanimura
,
J. Chem. Phys.
119
,
2155
(
2003
).
25.
A.
Freiberg
,
V. I.
Godik
,
T.
Pullerits
, and
K.
Timpmann
,
Biochim. Biophys. Acta
973
,
93
(
1989
).
26.
T.
Pullerits
,
K. J.
Visscher
,
S.
Hess
,
V.
Sundström
,
A.
Freiberg
, and
K.
Timpmann
,
Biophys. J.
66
,
236
(
1994
).
27.
S. E.
Bradforth
,
R.
Jimenez
,
F.
van Mourik
,
R.
van Grondelle
, and
G. R.
Fleming
,
J. Phys. Chem.
99
,
16179
(
1995
).
28.
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
108
,
7763
(
1998
).
29.
R.
van Grondelle
and
V. I.
Novoderezhkin
,
Phys. Chem. Chem. Phys.
8
,
793
(
2006
).
30.
M.
Cho
,
H. M.
Vaswani
,
T.
Brixner
,
J.
Stenger
, and
G. R.
Fleming
,
J. Phys. Chem. B
109
,
10542
(
2005
).
31.
K.
Timpmann
,
G.
Trinkunas
,
P.
Qian
,
C. N.
Hunter
, and
A.
Freiberg
,
Chem. Phys. Lett.
414
,
359
(
2005
).
32.
G.
Trinkunas
and
A.
Freiberg
,
J. Lumin.
119–120
,
105
(
2006
).
33.
L.
Valkunas
,
J.
Janusonis
,
D.
Rutkauskas
, and
R.
van Grondelle
,
J. Lumin.
127
,
269
(
2007
).
34.
J.
Janusonis
,
L.
Valkunas
,
D.
Rutkauskas
, and
R.
van Grondelle
,
Biophys. J.
94
,
1348
(
2008
).
35.
A.
Freiberg
,
M.
Ratsep
,
K.
Timpmann
, and
G.
Trinkunas
,
Chem. Phys.
357
,
102
(
2009
).
36.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
37.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
,
J. Chem. Phys.
131
,
094502
(
2009
).
38.
A.
Ishizaki
,
T. R.
Calhoun
,
G. S.
Schlau-Cohen
, and
G. R.
Fleming
,
Phys. Chem. Chem. Phys.
12
,
7319
(
2010
).
39.
J.
Roden
,
A.
Eisfeld
,
W.
Wolff
, and
W.
Strunz
,
Phys. Rev. Lett.
103
,
058301
(
2009
).
40.
P.
Rebentrost
,
R.
Chakraborty
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
131
,
184102
(
2009
).
41.
T.
Kubar
,
U.
Kleinekathöfer
, and
M.
Elstner
,
J. Phys. Chem. B
113
,
13107
(
2009
).
42.
N.
Demirdöven
,
M.
Khalil
, and
A.
Tokmakoff
,
Phys. Rev. Lett.
89
,
237401
(
2002
).
43.
T.
Renger
and
V.
May
,
J. Phys. Chem. A
102
,
4381
(
1998
).
44.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Chem. A
111
,
9269
(
2007
).
45.
M.
Sarovar
,
Y. C.
Cheng
, and
K. B.
Whaley
, e-print arXiv:0911.5427.
46.
S.
Oellerich
and
J.
Köhler
,
Photosynth. Res.
101
,
171
(
2009
).
47.
P.
Nalbach
,
J.
Eckel
, and
M.
Thorwart
,
New J. Phys.
12
,
065043
(
2010
).
48.
A. G.
Dijkstra
and
Y.
Tanimura
,
New J. Phys.
12
,
055005
(
2010
).
49.
A.
Ishizaki
and
G. R.
Fleming
,
New J. Phys.
12
,
055004
(
2010
).
50.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
51.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
52.
R. X.
Xu
,
P.
Cui
,
X. Q.
Li
,
Y.
Mo
, and
Y. J.
Yan
,
J. Phys. Chem.
122
,
041103
(
2005
).
53.
M. K.
Sener
,
J. D.
Olsen
,
C. N.
Hunter
, and
K.
Schulten
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
15723
(
2007
).
54.
T.
Meier
,
Y.
Zhao
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
107
,
3876
(
1997
).
55.
V.
May
,
O.
Kühn
,
J.
Wiley
, and
S.
Inc
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley
,
New York
,
2004
).
56.
M.
Schröder
,
M.
Schreiber
, and
U.
Kleinekathöfer
,
J. Chem. Phys.
126
,
114102
(
2007
).
57.
M. K.
Şener
,
S.
Park
,
D.
Lu
,
A.
Damjanović
,
T.
Ritz
,
P.
Fromme
, and
K.
Schulten
,
J. Chem. Phys.
120
,
11183
(
2004
).
58.
V.
May
,
Int. J. Quantum Chem.
106
,
3056
(
2006
).
59.
V. I.
Novoderezhkin
,
D.
Rutkauskas
, and
R.
van Grondelle
,
Biophys. J.
90
,
2890
(
2006
).
60.
L.
Janosi
,
I.
Kosztin
, and
A.
Damjanovic
,
J. Chem. Phys.
125
,
014903
(
2006
).
61.
O.
Kühn
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
105
,
8586
(
1996
).
62.
O.
Zerlauskiene
,
G.
Trinkunas
,
A.
Gall
,
B.
Robert
,
V.
Urboniene
, and
L.
Valkunas
,
J. Phys. Chem. B
112
,
15883
(
2008
).
63.
X.
Hu
,
A.
Damjanović
,
T.
Ritz
, and
K.
Schulten
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
5935
(
1998
).
64.
A.
Damjanović
,
T.
Ritz
, and
K.
Schulten
,
Phys. Rev. E
59
,
3293
(
1999
).
65.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys. (NY)
149
,
374
(
1983
).
66.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
Singapore
,
2008
).
67.
Y. J.
Yan
and
R. X.
Xu
,
Annu. Rev. Phys. Chem.
56
,
187
(
2005
).
68.
C.
Olbrich
and
U.
Kleinekathöfer
,
J. Phys. Chem. B
,
115
,
758
(
2011
).
69.
L.
Jaonosi
,
H.
Keer
,
I.
Kosztin
, and
T.
Ritz
,
Chem. Phys.
323
,
117
(
2006
).
70.
C.
Meier
and
D. J.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
71.
M.
Schröder
,
U.
Kleinekathöfer
, and
M.
Schreiber
,
J. Chem. Phys.
124
,
084903
(
2006
).
72.
A.
Freiberg
and
G.
Trinkunas
,
Photosynthesis in Silico
(
Springer
,
Berlin
,
2009
), Vol.
29
, p.
55
.
73.
M.
Şener
and
K.
Schulten
,
Phys. Rev. E
65
,
031916
(
2002
).
74.
E.
Hennebicq
,
D.
Beljonne
,
C.
Curutchet
,
G. D.
Scholes
, and
R. J.
Silbey
,
J. Chem. Phys.
130
,
214505
(
2009
).
You do not currently have access to this content.