We describe a theoretical framework for understanding the heteronuclear version of the third spin assisted recoupling polarization transfer mechanism and demonstrate its potential for detecting long-distance intramolecular and intermolecular 15N–13C contacts in biomolecular systems. The pulse sequence, proton assisted insensitive nuclei cross polarization (PAIN-CP) relies on a cross term between 1H–15N and 1H–13C dipolar couplings to mediate zero- and/or double-quantum 15N–13C recoupling. In particular, using average Hamiltonian theory we derive effective Hamiltonians for PAIN-CP and show that the transfer is mediated by trilinear terms of the form N±CHz (ZQ) or N±C±Hz (DQ) depending on the rf field strengths employed. We use analytical and numerical simulations to explain the structure of the PAIN-CP optimization maps and to delineate the appropriate matching conditions. We also detail the dependence of the PAIN-CP polarization transfer with respect to local molecular geometry and explain the observed reduction in dipolar truncation. In addition, we demonstrate the utility of PAIN-CP in structural studies with 15N–13C spectra of two uniformly 13C,15N labeled model microcrystalline proteins—GB1, a 56 amino acid peptide, and Crh, a 85 amino acid domain swapped dimer (MW = 2 × 10.4 kDa). The spectra acquired at high magic angle spinning frequencies (ωr/2π > 20 kHz) and magnetic fields (ω0H/2π = 700–900 MHz) using moderate rf fields, yield multiple long-distance intramonomer and intermonomer 15N–13C contacts. We use these distance restraints, in combination with the available x-ray structure as a homology model, to perform a calculation of the monomer subunit of the Crh protein.

1.
K. N.
Hu
,
W. M.
Yau
, and
R.
Tycko
,
J Am. Chem. Soc.
132
(
1
),
24
(
2010
);
[PubMed]
K. N.
Hu
,
R. H.
Havlin
,
W. M.
Yau
, and
R.
Tycko
,
J. Mol. Biol.
392
(
4
),
1055
(
2009
).
[PubMed]
2.
P. C. A.
Van Der Wel
,
J. R.
Lewandowski
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
129
(
16
),
5117
(
2007
);
[PubMed]
R.
Tycko
,
K. L.
Sciarretta
,
J.
Orgel
, and
S. C.
Meredith
,
Biochemistry
48
(
26
),
6072
(
2009
);
[PubMed]
R. B.
Wickner
,
F.
Dyda
, and
R.
Tycko
,
Proc. Natl. Acad. Sci. U.S.A.
105
(
7
),
2403
(
2008
);
[PubMed]
A. K.
Paravastu
,
R. D.
Leapman
,
W. M.
Yau
, and
R.
Tycko
,
Proc. Natl. Acad. Sci. U.S.A.
105
(
47
),
18349
(
2008
);
[PubMed]
F.
Shewmaker
,
R. B.
Wickner
, and
R.
Tycko
,
Proc. Natl. Acad. Sci. U.S.A.
103
(
52
),
19754
(
2006
);
[PubMed]
J. J.
Helmus
,
K.
Surewicz
,
P. S.
Nadaud
,
W. K.
Surewicz
, and
C. P.
Jaroniec
,
Proc. Natl. Acad. Sci. U.S.A.
105
(
17
),
6284
(
2008
).
[PubMed]
3.
C.
Wasmer
,
A.
Lange
,
H.
Van Melckebeke
,
A. B.
Siemer
,
R.
Riek
, and
B. H.
Meier
,
Science
319
(
5869
),
1523
(
2008
).
4.
J. M.
Griffiths
,
K. V.
Lakshmi
,
A. E.
Bennett
,
J.
Raap
,
C. M.
Vanderwielen
,
J.
Lugtenburg
,
J.
Herzfeld
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
116
(
22
),
10178
(
1994
);
F.
Creuzet
,
A.
McDermott
,
R.
Gebhard
,
K.
Vanderhoef
,
M. B.
Spijkerassink
,
J.
Herzfeld
,
J.
Lugtenburg
,
M. H.
Levitt
, and
R. G.
Griffin
,
Science
251
(
4995
),
783
(
1991
);
[PubMed]
A. T.
Petkova
,
M.
Baldus
,
M.
Belenky
,
M.
Hong
,
R. G.
Griffin
, and
J.
Herzfeld
,
J. Magn. Reson.
160
(
1
),
1
(
2003
);
[PubMed]
A.
Lange
,
K.
Giller
,
S.
Hornig
,
M. F.
Martin-Eauclaire
,
O.
Pongs
,
S.
Becker
, and
M.
Baldus
,
Nature (London)
440
(
7086
),
959
(
2006
);
S. D.
Cady
,
K.
Schmidt-Rohr
,
J.
Wang
,
C. S.
Soto
,
W. F.
DeGrado
, and
M.
Hong
,
Nature (London)
463
(
7281
),
689
(
2010
).
5.
E. R.
Andrew
,
A.
Bradbury
, and
R. G.
Eades
,
Nature (London)
182
(
4650
),
1659
(
1958
);
I. J.
Lowe
,
Phys. Rev. Lett.
2
(
7
),
285
(
1959
).
6.
D. P.
Raleigh
,
G. S.
Harbison
,
T. G.
Neiss
,
J. E.
Roberts
, and
R. G.
Griffin
,
Chem. Phys. Lett.
138
(
4
),
285
(
1987
);
D. P.
Raleigh
,
M. H.
Levitt
, and
R. G.
Griffin
,
Chem. Phys. Lett.
146
(
1–2
),
71
(
1988
);
R.
Ramachandran
,
V.
Ladizhansky
,
V. S.
Bajaj
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
125
(
50
),
15623
(
2003
);
[PubMed]
A. E.
Bennett
,
J. H.
Ok
,
R. G.
Griffin
, and
S.
Vega
,
J. Chem. Phys.
96
(
11
),
8624
(
1992
);
A. E.
Bennett
,
C. M.
Rienstra
,
J. M.
Griffiths
,
W. G.
Zhen
,
P. T.
Lansbury
, and
R. G.
Griffin
,
J. Chem. Phys.
108
(
22
),
9463
(
1998
);
N. C.
Nielsen
,
H.
Bildsoe
,
H. J.
Jakobsen
, and
M. H.
Levitt
,
J. Chem. Phys.
101
(
3
),
1805
(
1994
);
R.
Verel
,
M.
Ernst
, and
B. H.
Meier
,
J. Magn. Reson.
150
(
1
),
81
(
2001
);
[PubMed]
R.
Tycko
and
G.
Dabbagh
,
Chem. Phys. Lett.
173
(
5–6
),
461
(
1990
).
7.
T.
Gullion
and
J.
Schaefer
,
J. Magn. Reson.
81
(
1
),
196
(
1989
).
8.
A. W.
Hing
,
S.
Vega
, and
J.
Schaefer
,
J. Magn. Reson.
96
(
1
),
205
(
1992
).
9.
C. P.
Jaroniec
,
B. A.
Tounge
,
J.
Herzfeld
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
123
(
15
),
3507
(
2001
).
10.
C. P.
Jaroniec
,
C.
Filip
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
124
(
36
),
10728
(
2002
).
11.
A.
Brinkmann
and
M. H.
Levitt
,
J. Chem. Phys.
115
(
1
),
357
(
2001
).
12.
I.
Bertini
,
A.
Bhaumik
,
G.
De Paepe
,
R. G.
Griffin
,
M.
Lelli
,
J. R.
Lewandowski
, and
C.
Luchinat
,
J. Am. Chem. Soc.
132
(
3
),
1032
(
2010
).
13.
F.
Castellani
,
B.
van Rossum
,
A.
Diehl
,
M.
Schubert
,
K.
Rehbein
, and
H.
Oschkinat
,
Nature (London)
420
(
6911
),
98
(
2002
);
A.
Loquet
,
B.
Bardiaux
,
C.
Gardiennet
,
C.
Blanchet
,
M.
Baldus
,
M.
Nilges
,
T.
Malliavin
, and
A.
Boeckmann
,
J. Am. Chem. Soc.
130
(
11
),
3579
(
2008
);
[PubMed]
S. G.
Zech
,
A. J.
Wand
, and
A. E.
McDermott
,
J. Am. Chem. Soc.
127
(
24
),
8618
(
2005
);
[PubMed]
T.
Manolikas
,
T.
Herrmann
, and
B. H.
Meier
,
J. Am. Chem. Soc.
130
(
12
),
3959
(
2008
).
[PubMed]
14.
G.
De Paepe
,
J. R.
Lewandowski
,
A.
Loquet
,
A.
Bockmann
, and
R. G.
Griffin
,
J. Chem. Phys.
129
(
24
) (
2008
).
15.
A. J.
Nieuwkoop
,
B. J.
Wylie
,
W. T.
Franks
,
G. J.
Shah
, and
C. M.
Rienstra
,
J. Chem. Phys.
131
(
9
) (
2009
).
16.
V. S.
Bajaj
,
M. L.
Mak-Jurkauskas
,
M.
Belenky
,
J.
Herzfeld
, and
R. G.
Griffin
,
J. Magn. Reson.
202
,
9
(
2010
).
17.
C. M.
Rienstra
,
L.
Tucker-Kellogg
,
C. P.
Jaroniec
,
M.
Hohwy
,
B.
Reif
,
M. T.
McMahon
,
B.
Tidor
,
T.
Lozano-Perez
, and
R. G.
Griffin
,
Proc. Natl. Acad. Sci. U.S.A.
99
(
16
),
10260
(
2002
);
[PubMed]
C. P.
Jaroniec
,
C. E.
MacPhee
,
V. S.
Bajaj
,
M. T.
McMahon
,
C. M.
Dobson
, and
R. G.
Griffin
,
Proc. Natl. Acad. Sci. U.S.A.
101
(
3
),
711
(
2004
);
[PubMed]
C. P.
Jaroniec
,
C. E.
MacPhee
,
N. S.
Astrof
,
C. M.
Dobson
, and
R. G.
Griffin
,
Proc. Natl. Acad. Sci. U.S.A.
99
(
26
),
16748
(
2002
).
[PubMed]
18.
G.
De Paepe
,
M. J.
Bayro
,
J.
Lewandowski
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
128
(
6
),
1776
(
2006
);
[PubMed]
G.
De Paepe
,
J. R.
Lewandowski
, and
R. G.
Griffin
,
J. Chem. Phys.
128
(
12
),
124503
(
2008
).
[PubMed]
19.
M. J.
Bayro
,
M.
Huber
,
R.
Ramachandran
,
T. C.
Davenport
,
B. H.
Meier
,
M.
Ernst
, and
R. G.
Griffin
,
J. Chem. Phys.
130
,
114506
(
2009
).
20.
N. M.
Szeverenyi
,
M. J.
Sullivan
, and
G. E.
Maciel
,
J. Magn. Reson.
47
(
3
),
462
(
1982
);
K.
Takegoshi
,
S.
Nakamura
, and
T.
Terao
,
Chem. Phys. Lett.
344
(
5–6
),
631
(
2001
);
K.
Takegoshi
,
S.
Nakamura
, and
T.
Terao
,
J. Chem. Phys.
118
(
5
),
2325
(
2003
);
C. R.
Morcombe
,
V.
Gaponenko
,
R. A.
Byrd
, and
K. W.
Zilm
,
J. Am. Chem. Soc.
126
(
23
),
7196
(
2004
).
[PubMed]
21.
A.
Lange
,
S.
Luca
, and
M.
Baldus
,
J. Am. Chem. Soc.
124
(
33
),
9704
(
2002
).
22.
J. R.
Lewandowski
,
G.
De Paepe
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
129
(
4
),
728
(
2007
).
23.
J. R.
Lewandowski
,
G.
De Paepe
,
M. T.
Eddy
,
J.
Struppe
,
W.
Maas
, and
R. G.
Griffin
,
J. Phys. Chem. B
113
(
27
),
9062
(
2009
).
24.
A. A.
Nevzorov
,
J. Am. Chem. Soc.
130
(
34
),
11282
(
2008
).
25.
U.
Haeberlen
and
J. S.
Waugh
,
Phys. Rev.
175
(
2
),
453
(
1968
).
26.
See supplementary material at http://dx.doi.org/10.1063/1.3541251 for additional simulations and experimental results as well as detailed discussions in order to fully support some important points of the manuscript.
27.
S. R.
Hartmann
and
E. L.
Hahn
,
Phys. Rev.
128
(
5
),
2042
(
1962
).
28.
M. H.
Levitt
,
T. G.
Oas
, and
R. G.
Griffin
,
Isr. J. Chem.
28
(
4
),
271
(
1988
);
T. G.
Oas
,
R. G.
Griffin
, and
M. H.
Levitt
,
J. Chem. Phys.
89
(
2
),
692
(
1988
).
29.
M.
Baldus
,
A. T.
Petkova
,
J.
Herzfeld
, and
R. G.
Griffin
,
Mol. Phys.
95
(
6
),
1197
(
1998
);
C. M.
Rienstra
,
M.
Hohwy
,
M.
Hong
, and
R. G.
Griffin
,
J. Am. Chem. Soc.
122
(
44
),
10979
(
2000
);
M.
Baldus
,
Prog. Nucl. Magn. Reson. Spectrosc.
41
(
1–2
),
1
(
2002
);
J.
Pauli
,
M.
Baldus
,
B.
van Rossum
,
H.
de Groot
, and
H.
Oschkinat
,
ChemBioChem
2
(
4
),
272
(
2001
).
[PubMed]
30.
M.
Juy
,
F.
Penin
,
A.
Favier
,
A.
Galinier
,
R.
Montserret
,
R.
Haser
,
J.
Deutscher
, and
A.
Bockmann
,
J. Mol. Biol.
332
(
4
),
767
(
2003
).
31.
A.
Bockmann
,
A.
Lange
,
A.
Galinier
,
S.
Luca
,
N.
Giraud
,
M.
Juy
,
H.
Heise
,
R.
Montserret
,
F.
Penin
, and
M.
Baldus
,
J. Biomol. NMR
27
(
4
),
323
(
2003
).
32.
M.
Etzkorn
,
A.
Bockmann
,
A.
Lange
, and
M.
Baldus
,
J. Am. Chem. Soc.
126
(
45
),
14746
(
2004
).
33.
J.
Yang
,
M. L.
Tasayco
, and
T.
Polenova
,
J. Am. Chem. Soc.
130
(
17
),
5798
(
2008
).

Supplementary Material

You do not currently have access to this content.