Triatomic transition-metal oxides in the “inserted dioxide” (O–M–O) structure represent one of the simplest examples of systems that undergo qualitative geometrical changes via subtle electronic-structure modulation. We consider here three transition-metal dioxide molecules (MO2 where M = Mn, Fe, or Co), for which the equilibrium structural (e.g., bent or linear geometry) and electronic (e.g., spin or symmetry) properties have been challenging to assign both theoretically and experimentally. Augmenting a standard density-functional theory (DFT) approach with a Hubbard term (DFT+U) occasionally overlocalizes the 3d manifold, leading to an incorrect bond elongation and, in turn, poor equilibrium geometries for MO2 molecules, while preserving good spin-state splittings. Proper description of both geometry and energetics for these molecules is recovered; however, through either calculating DFT+U relaxations at fixed M–O bond lengths or by inclusion of an intersite interaction term V that favors M(3d)–O(2p) interactions. In this latter case, both U and V are calculated fully from first-principles and are not fitting parameters. Finally, we identify an approach that more accurately determines the Hubbard U over a coordinate in which the covalent character of bonding varies.

1.
I.
Schlichting
,
J.
Berendzen
,
K.
Chu
,
A. M.
Stock
,
S. A.
Maves
,
D. E.
Benson
,
B. M.
Sweet
,
D.
Ringe
,
G. A.
Petsko
, and
S. G.
Sligar
,
Science
287
,
1615
(
2000
).
2.
L. C.
Blasiak
,
F. H.
Vaillancourt
,
C. T.
Walsh
, and
C. L.
Drennan
,
Nature (London)
440
,
368
(
2006
).
3.
H. J.
Kulik
,
L. C.
Blasiak
,
N.
Marzari
, and
C. L.
Drennan
,
J. Am. Chem. Soc.
131
,
14426
(
2009
).
4.
H. J.
Kulik
,
M.
Cococcioni
,
D. A.
Scherlis
, and
N.
Marzari
,
Phys. Rev. Lett.
97
,
103001
(
2006
).
5.
H. J.
Kulik
and
N.
Marzari
,
J. Chem. Phys.
129
,
134314
(
2008
).
6.
A.
Decker
,
J.-U.
Rohde
,
E. J.
Klinker
,
S. D.
Wong
,
L.
Que
 , Jr.
, and
E. I.
Solomon
,
J. Am. Chem. Soc.
129
,
15983
(
2007
).
7.
Y.
Gong
,
M.
Zhou
, and
L.
Andrews
,
Chem. Rev.
109
,
6765
(
2009
).
8.
D.
Self
and
J.
Plane
,
Phys. Chem. Chem. Phys.
5
,
1407
(
2003
).
9.
R.
Ferrante
,
J.
Wilkerson
,
W.
Graham
, and
W.
Weltner
,
J. Chem. Phys.
67
,
5904
(
1977
).
10.
G.
Chertihin
and
L.
Andrews
,
J. Phys. Chem. A
101
,
8547
(
1997
).
11.
Y.
Gong
,
G.
Wang
, and
M.
Zhou
,
J. Phys. Chem. A
112
,
4936
(
2008
).
12.
J. W.
Fan
and
L. S.
Wang
,
J. Chem. Phys.
102
,
8714
(
1995
).
13.
G.
Chertihin
,
W.
Saffel
,
J.
Yustein
,
L.
Andrews
,
M.
Neurock
,
A.
Ricca
, and
C.
Bauschlicher
,
J. Phys. Chem.
100
,
5261
(
1996
).
14.
L.
Andrews
,
G.
Chertihin
,
A.
Ricca
, and
C.
Bauschlicher
,
J. Am. Chem. Soc.
118
,
467
(
1996
).
15.
R.
VanZee
,
Y.
Hamrick
,
S.
Li
, and
W.
Weltner
,
J. Phys. Chem.
96
,
7247
(
1992
).
16.
R.
Matsui
,
K.
Senba
, and
K.
Honma
,
J. Phys. Chem. A
101
,
179
(
1997
).
17.
G.
Chertihin
,
A.
Citra
,
L.
Andrews
, and
C.
Bauschlicher
,
J. Phys. Chem. A
101
,
8793
(
1997
).
18.
D.
Danset
,
M.
Alikhani
, and
L.
Manceron
,
J. Phys. Chem. A
109
,
97
(
2005
).
19.
G.
Gutsev
,
B.
Rao
,
P.
Jena
,
X.
Li
, and
L.
Wang
,
J. Chem. Phys.
113
,
1473
(
2000
).
20.
E.
Uzunova
,
G.
St Nikolov
, and
H.
Mikosch
,
Chem. Phys. Chem.
5
,
192
(
2004
).
21.
G.
Gutsev
,
S.
Khanna
,
B.
Rao
, and
P.
Jena
,
J. Phys. Chem. A
103
,
5812
(
1999
).
22.
F.
Grein
,
Int. J. Quantum Chem.
109
,
549
(
2009
).
23.
G.
Gutsev
,
B.
Rao
, and
P.
Jena
,
J. Phys. Chem. A
104
,
11961
(
2000
).
24.
E.
Uzunova
,
G.
St Nikolov
, and
H.
Mikosch
,
J. Phys. Chem. A
106
,
4104
(
2002
).
25.
H. J.
Kulik
and
N.
Marzari
,
J. Chem. Phys.
133
,
114103
(
2010
).
26.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
27.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
,
Phy. Rev. B
52
,
R5467
(
1995
).
28.
N. J.
Mosey
and
E. A.
Carter
,
Phys. Rev. B
76
,
155123
(
2007
).
29.
N. J.
Mosey
,
P.
Liao
, and
E. A.
Carter
,
J. Chem. Phys.
129
,
014103
(
2008
).
30.
M.
Cococcioni
,
Theoretical and Computational Methods in Mineral Physics: Geophysical Applications
,
Reviews in Mineralogy & Geochemistry
Vol.
71
(
Mineralogical Society of America
,
Washington, D. C.
,
2010
) pp.
147
167
.
31.
P. M.
Panchmatia
,
B.
Sanyal
, and
P. M.
Oppeneer
,
Chem. Phys.
343
,
47
(
2008
).
32.
P.
Rivero
,
C.
Loschen
,
I. D. P. R.
Moreira
, and
F.
Illas
,
J. Comput. Chem.
30
,
2316
(
2009
).
33.
A.
Sorkin
,
M. A.
Iron
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
307
(
2008
).
34.
M.
Cococcioni
and
S.
De Gironcoli
,
Phys. Rev. B
71
,
035105
(
2005
).
35.
S.
Dudarev
,
G.
Botton
,
S.
Savrasov
,
C.
Humphreys
, and
A.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
36.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
).
37.
P.
Mori-Sanchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
38.
F.
Furche
and
J. P.
Perdew
,
J. Chem. Phys.
124
,
044103
(
2006
).
39.
D.
Rinaldo
,
L.
Tian
,
J. N.
Harvey
, and
R. A.
Friesner
,
J. Chem. Phys.
129
,
164108
(
2008
).
40.
T. M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
,
J. Phys. Chem. A
112
,
12530
(
2008
).
41.
A. V.
Krukau
,
G. E.
Scuseria
,
J. P.
Perdew
, and
A.
Savin
,
J. Chem. Phys.
129
,
124103
(
2008
).
42.
V. L.
Campo
 Jr.
and
M.
Cococcioni
,
J. Phys.: Condens. Matter
22
,
055602
(
2010
).
43.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
45.
J.
Sugar
and
C.
Corliss
,
J. Phys. Chem. Ref. Data
14
,
1
(
1985
).
46.
M.
Allavena
,
R.
Rysnik
,
D.
White
,
V.
Calder
, and
D.
Mann
,
J. Chem. Phys.
50
,
3399
(
1969
).
47.
G.
Brabson
,
Z.
Mielke
, and
L.
Andrews
,
J. Phys. Chem.
95
,
79
(
1991
).
48.
S.
Thorwirth
,
M.
McCarthy
,
C.
Gottlieb
,
P.
Thaddeus
,
H.
Gupta
, and
J.
Stanton
,
J. Chem. Phys.
123
,
054326
(
2005
).
You do not currently have access to this content.