In single-molecule protein experiments, the observable variables are restricted within a small fraction of the entire degrees of freedom. Therefore, to investigate the physical nature of proteins in detail, we always need to estimate the hidden internal structure referring only to the accessible degrees of freedom. We formulate this problem on the basis of Bayesian inference, which can be applied to various complex systems. In the ideal case, we find that in general the framework actually works. Although careful numerical studies confirm that our method outperforms the conventional method by up to two orders of magnitude, we find a striking phenomenon: a loss-of-precision transition occurs abruptly when the design of the observation system is inappropriate. The basic features of the proposed method are illustrated using a simple but nontrivial model.

1.
T.
Nishizaka
,
K.
Oiwa
,
H.
Noji
,
S.
Kimura
,
E.
Muneyuki
,
M.
Yoshida
, and
K.
Kinosita
 , Jr.
,
Nat. Struct. Mol. Biol.
11
,
142
(
2004
).
2.
T.
Ishii
,
Y.
Murayama
,
A.
Katano
,
K.
Maki
,
K.
Kuwajima
, and
M.
Sano
,
Biochem. Biophys. Res. Commun.
375
,
586
(
2008
).
3.
J. P.
Junker
,
F.
Ziegler
, and
M.
Rief
,
Science
323
,
633
(
2009
).
4.
K.
Svoboda
,
C. F.
Schmidt
,
B. J.
Schnapp
, and
S. M.
Block
,
Nature (London)
365
,
721
(
1993
).
5.
H.
Noji
,
R.
Yasuda
,
M.
Yoshida
, and
K.
Kinosita
 , Jr.
,
Nature (London)
386
,
299
(
1997
).
6.
K.
Kitamura
,
M.
Tokunaga
,
A. H.
Iwane
, and
T.
Yanagida
,
Nature (London)
397
,
129
(
1999
).
7.
K.
Shiroguchi
and
K.
Kinosita
 , Jr.
,
Science
316
,
1208
(
2007
).
8.
K.
Hu
,
L.
Ji
,
K. T.
Applegate
,
G.
Danuser
, and
C. M.
Waterman-Storer
,
Science
315
,
111
(
2007
).
9.
I.
Golding
,
J.
Paulsson
,
S. M.
Zawilski
, and
E. C.
Cox
,
Cell
123
,
1025
(
2005
).
10.
J. W. J.
Kerssemakers
,
E. L.
Munteanu
,
L.
Laan
,
T. L.
Noetzel
,
M. E.
Janson
, and
M.
Dogterom
,
Nature (London)
442
,
709
(
2006
).
11.
O.
Flomenbom
,
J.
Klafter
, and
A.
Szabo
,
Biophys. J.
88
,
3780
(
2005
).
12.
A.
Baba
and
T.
Komatsuzaki
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
19297
(
2007
).
13.
C. B.
Li
,
H.
Yang
, and
T.
Komatsuzaki
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
536
(
2008
).
14.
H.
Akaike
, “
Likelihood and the Bayes Procedure
,” in
Bayesian Statistics
, edited by
J. M.
Bernardo
,
M. H. D.
Groot
,
D. V.
Lindley
, and
A. F. M.
Smith
(
University Press
,
Valencia
,
1980
), pp.
143
166
15.
C. P.
Robert
,
The Bayesian Choice: A Decision-Theoretic Motivation
(
Springer-Verlag
,
New York
,
1994
).
16.
C. M.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer-Verlag
, New York,
2006
).
17.
We naturally assume that the prior probability distribution of [x] is uniform. In this case, the MAP estimator is identical to a maximum likelihood estimator (MLE).
18.
W.
Bialek
,
C. G.
Callan
, and
S. P.
Strong
,
Phys. Rev. Lett.
77
,
4693
(
1996
).
19.
R.
Yasuda
,
H.
Noji
,
M.
Yoshida
,
K.
Kinosita
 , Jr.
, and
H.
Itoh
,
Nature (London)
410
,
898
(
2001
).
20.
H. C.
Berg
, in
Random Walks in Biology
(
Princeton University
,
Princeton, NJ
,
1993
), Chap. 4
21.
K.
Sekimoto
,
Stochastic Energetics
(
Springer-Verlag
,
Berlin Heidelberg
,
2010
), Chap. 1.
22.
L.
Onsager
and
S.
Machlup
,
Phys. Rev.
91
,
1505
(
1953
);
24.
R.
Graham
,
Z. Physik B
26
,
281
(
1976
).
25.
R. L.
Stratonovich
,
SIAM J. Control
4
,
362
(
1966
).
26.
R.
Mortensen
,
J. Stat. Phys.
1
,
271
(
1969
).
27.
K. L. C.
Hunt
and
J.
Ross
,
J. Chem. Phys.
75
,
976
(
1981
).
28.
Using the concrete expression for the path probability [Eqs. (8)–(12)], Eq. (5) can be explicitly written as a tridiagonal system of linear equations. Therefore, the exact solution of the MAP estimator,
$[\hat{x}](y; {\bm \Pi})$
[x̂](y;Π)
, can be easily obtained.
31.
See supplementary material at http://dx.doi.org/10.1063/1.3516587 for the detailed derivation of the Hamiltonian, the analytical solution of the power spectrum, the time correlation of x(t) and
$\hat{x}(t)$
x̂(t)
, and the Hamiltonian in the infinite interval limit.
32.
D. R.
Cox
and
E. J.
Snell
,
J. R. Stat. Soc. Ser. B (Methodol.)
30
,
248
(
1968
).
33.
D. R.
Cox
and
D. V.
Hinkley
, in
Theoretical Statistics
(
Chapman and Hall
,
London
(
1974
)), Chap. 8.
34.
B.
Caroli
,
C.
Caroli
, and
B.
Roulet
,
J. Stat. Phys.
26
,
83
(
1981
).
35.
A.
Dempster
,
N.
Laird
, and
D.
Rubin
,
J. R. Stat. Soc. Ser. B
39
,
1
(
1977
).
36.
In the case of the single-molecule experiment of F1-ATPase, the value of Γ* is easily changed through controlling viscosity of the solution. h* can be controlled by the length of the linker. γ* and k* also will be changed by specific ligands such as ADP or ATP analogs, or the mutation.

Supplementary Material

You do not currently have access to this content.