An ab initio method for the direct calculation of NMR shieldings for selected nuclei at the Hartree–Fock and density-functional theory level is presented. Our method shows a computational effort scaling only sublinearly with molecular size, as it is motivated by the physical consideration that the chemical shielding is dominated by its local environment. The key feature of our method is to avoid the conventionally performed calculation of all NMR shieldings but instead to solve directly for specific nuclear shieldings. This has important implications not only for the study of large molecules, but also for the simulation of solvent effects and molecular dynamics, since often just a few shieldings are of interest. Our theory relies on two major aspects both necessary to provide a sublinear scaling behavior: First, an alternative expression for the shielding tensor is derived, which involves the response density matrix with respect to the nuclear magnetic moment instead of the response to the external magnetic field. Second, as unphysical long-range contributions occur within the description of distributed gauge origin methods that do not influence the final expectation value, we present a screening procedure to truncate the B-field dependent basis set, which is crucial in order to ensure an early onset of the sublinear scaling. The screening is in line with the r−2 distance decay of Biot–Savarts law for induced magnetic fields. Our present truncation relies on the introduced concept of “individual gauge shielding contributions” applied to a reformulated shielding tensor, the latter consisting of gauge-invariant terms. The presented method is generally applicable and shows typical speed-ups of about one order of magnitude; moreover, due to the reduced scaling behavior of

$\rm {\cal O}(1)$
O(1) as compared to
$\rm {\cal O}(N)$
O(N)
, the wins become larger with increasing system size. We illustrate the validity of our method for several test systems, including ring-current dominated systems and biomolecules with more than 1000 atoms.

1.
E. M.
Purcell
,
H. G.
Torrey
, and
R. V.
Pound
,
Phys. Rev.
69
,
37
(
1946
).
2.
F.
Bloch
,
W.
Hansen
, and
M. E.
Packard
,
Phys. Rev.
69
,
127
(
1946
).
3.
4.
J. H.
Van Vleck
,
Theory of Electric and Magnetic Susceptibilities
(
Oxford University Press
,
New York
,
1932
).
7.
8.
W.
Kutzelnigg
,
Isr. J. Chem.
19
,
193
(
1980
).
9.
M.
Schindler
and
W.
Kutzelnigg
,
J. Chem. Phys.
76
,
1919
(
1982
).
10.
A. E.
Hansen
and
T.
Bouman
,
J. Chem. Phys.
82
,
5035
(
1985
).
11.
J. A.
Pople
,
Proc. R. Soc. London, Ser. A
239
,
541
(
1957
).
12.
J. A.
Pople
,
W. G.
Schneider
, and
H. J.
Bernstein
,
High-Resolution Nuclear Magnetic Resonance
(
McGraw-Hill
,
New York
,
1959
).
14.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
,
J. Am. Chem. Soc.
112
,
8251
(
1990
).
15.
16.
M.
Häser
,
R.
Ahlrichs
,
H. P.
Baron
,
P.
Weiss
, and
H.
Horn
,
Theor. Chim. Acta
83
,
455
(
1992
).
17.
J.
Gauss
and
J. F.
Stanton
,
Adv. Chem. Phys.
123
,
355
(
2002
).
18.
J.
Gauss
, “
Molecular properties
,” in
Modern Methods and Algorithms of Quantum Chemistry
, edited by
J.
Grotendorst
(
John von Neumann Institute for Computing
,
Julich
,
2000
), Vol.
3
, pp.
541
592
.
19.
C.
Ochsenfeld
,
J.
Kussmann
, and
F.
Koziol
,
Angew. Chem., Int. Ed.
43
,
4485
(
2004
).
20.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
127
,
054103
(
2007
).
21.
L. D.
Landau
and
E. M.
Lifschitz
,
Lehrbuch der Theoretischen Physik, Bd. II
(
Akademie
,
Berlin
,
1981
).
22.
C. A.
White
,
B. G.
Johnson
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
230
,
8
(
1994
).
23.
C.
Ochsenfeld
,
C. A.
White
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
1663
(
1998
).
24.
C.
Ochsenfeld
,
Chem. Phys. Lett.
327
,
216
(
2000
).
25.
J.
Gerratt
and
I. M.
Mills
,
J. Chem. Phys.
49
,
1719
(
1968
).
26.
Y.
Osamura
Y.
Yamaguchi
,
P.
Saxe
,
D. J.
Fox
,
M. A.
Vincent
, and
H. F.
Schaefer
,
J. Mol. Struct.
103
,
183
(
1983
).
27.
C.
Ochsenfeld
and
M.
Head-Gordon
,
Chem. Phys. Lett.
270
,
399
(
1997
).
28.
M.
Beer
and
C.
Ochsenfeld
,
J. Chem. Phys.
128
,
221101
(
2008
).
29.
F. Ribas
Prado
,
C.
Giessner-Prettre
,
J.-P.
Daudey
,
A.
Pullman
,
J. F.
Hinton
,
G.
Young
, and
D.
Harpool
,
J. Magn. Reson.
37
,
431
(
1980
).
30.
H.
Fukui
,
K.
Miura
, and
H.
Shinbori
,
J. Chem. Phys.
83
,
907
(
1985
).
31.
R. S.
Mulliken
,
J. Chem. Phys.
36
,
3428
(
1962
).
32.
E.
Cuthill
and
J.
McKee
,
Proceedings of the 24th National Conference
(
ACM
,
New York
,
1969
), pp.
157
172
.
33.
C.
Ochsenfeld
,
J.
Kussmann
, and
D. S.
Lambrecht
, “
Linear-scaling methods in quantum chemistry
,” in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
T. R.
Cundari
(
VCH Publishers
,
New York
,
2007
), Vol.
23
, pp.
1
82
.
34.
F.
Jensen
,
Introduction to Computational Chemistry
2nd ed. (
Wiley
,
New York
,
2007
).
35.
A.
Dalgarno
,
Proc. R. Soc. London, Ser. A
251
,
282
(
1959
).
36.
J.
Gauss
and
J. F.
Stanton
, “
Electron-correlated methods for the calculation of NMR chemical shifts
,” in
Calculation of NMR and EPR Parameters
, edited by
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
(
Wiley-VCH
,
Weinheim
,
2004
), pp.
123
139
.
37.
M.
Krykunov
and
J.
Autschbach
,
J. Chem. Phys.
123
,
114103
(
2005
).
38.
T.
Thonhauser
,
D.
Ceresoli
,
A. A.
Mostofi
,
N.
Marzari
,
R.
Resta
, and
D.
Vanderbilt
,
J. Chem. Phys.
131
,
101101
(
2009
).
39.
N. C.
Handy
and
H. F.
Schaefer
 III
,
J. Chem. Phys.
81
,
5031
(
1984
).
40.
Development version of the program package Q-Chem, (www.q-chem.com).
41.
M.
Challacombe
,
J. Chem. Phys.
110
,
2332
(
1999
).
42.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
127
,
204103
(
2007
).
43.
G.
Wang
,
J. T.
Sparrow
, and
R. J.
Cushley
,
Biochemistry
36
,
13657
(
1997
).
44.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
27
,
240
(
1931
).
45.
S.
Schweizer
,
B.
Doser
, and
C.
Ochsenfeld
,
J. Chem. Phys.
128
,
154101
(
2008
).
46.
V. G.
Malkin
,
O. L.
Malkina
, and
D. R.
Salahub
,
Chem. Phys. Lett.
204
,
80
(
1993
).
47.
A. M.
Lee
,
N. C.
Handy
, and
S. M.
Colwell
,
J. Chem. Phys.
103
,
10095
(
1995
).
48.
T.
Helgaker
,
P. J.
Wilson
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
113
,
2983
(
2000
).
You do not currently have access to this content.