We present a detailed theoretical investigation on the dissociation energy of CuO+, carried out by means of coupled cluster theory, the multireference averaged coupled pair functional (MR-ACPF) approach, diffusion quantum Monte Carlo (DMC), and density functional theory (DFT). At the respective extrapolated basis set limits, most post-Hartree–Fock approaches agree within a narrow error margin on a De value of 26.0 kcal mol−1 [coupled-cluster singles and doubles level augmented by perturbative triples corrections, CCSD(T)], 25.8 kcal mol−1 (CCSDTQ via the high accuracy extrapolated ab initio thermochemistry protocol), and 25.6 kcal mol−1 (DMC), which is encouraging in view of the disaccording data published thus far. The configuration-interaction based MR-ACPF expansion, which includes single and double excitations only, gives a slightly lower value of 24.1 kcal mol−1, indicating that large basis sets and triple excitation patterns are necessary ingredients for a quantitative assessment. Our best estimate for D0 at the CCSD(T) level is 25.3 kcal mol−1, which is somewhat lower than the latest experimental value (D0 = 31.1 ± 2.8 kcal mol−1; reported by the Armentrout group) [Int. J. Mass Spectrom. 182/183, 99 (1999)]. These highly correlated methods are, however, computationally very demanding, and the results are therefore supplemented with those of more affordable DFT calculations. If used in combination with moderately-sized basis sets, the M05 and M06 hybrid functionals turn out to be promising candidates for studies on much larger systems containing a [CuO]+ core.

1.
E. I.
Solomon
,
P.
Chen
,
M.
Metz
,
S.
Lee
, and
A. E.
Palmer
,
Angew. Chem. Int. Ed.
40
,
4570
(
2001
).
2.
E. A.
Lewis
and
W. B.
Tolman
,
Chem. Rev.
104
,
1047
(
2004
).
3.
B. F.
Gherman
and
C. J.
Cramer
,
Coord. Chem. Rev.
253
,
723
(
2009
).
4.
C. J.
Cramer
and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
11
,
10757
(
2009
).
5.
O.
Sander
,
A.
Henß
,
C.
Näther
,
C.
Würtele
,
M. C.
Holthausen
,
S.
Schindler
, and
F.
Tuczek
,
Chem. Eur. J.
14
,
9714
(
2008
).
6.
L. M.
Mirica
,
M.
Vance
,
D. J.
Rudd
,
B.
Hedman
,
K. O.
Hodgson
,
E. I.
Solomon
, and
T. D. P.
Stack
,
Science
308
,
1890
(
2005
).
7.
P. E. M.
Siegbahn
,
J. Biol. Inorg. Chem.
8
,
567
(
2003
).
8.
P.
Spuhler
and
M. C.
Holthausen
,
Angew. Chem. Int. Ed.
42
,
5961
(
2003
).
9.
L. M.
Mirica
,
X.
Ottenwaelder
, and
T. D. P.
Stack
,
Chem. Rev.
104
,
1013
(
2004
).
10.
C. J.
Cramer
,
M.
Włoch
,
P.
Piecuch
,
C.
Puzzarini
, and
L.
Gagliardi
,
J. Phys. Chem. A
110
,
1991
(
2006
).
11.
M.
Flock
and
K.
Pierloot
,
J. Phys. Chem. A
103
,
95
(
1999
).
12.
C. J.
Cramer
and
W. B.
Tolman
,
Acc. Chem. Res.
40
,
601
(
2007
).
13.
S.
Hong
,
A. K.
Gupta
, and
W. B.
Tolman
,
Inorg. Chem.
48
,
6323
(
2009
).
14.
A.
Crespo
,
M. A.
Marti
,
A. E.
Roitberg
,
L. M.
Amzel
, and
D. A.
Estrin
,
J. Am. Chem. Soc.
128
,
12817
(
2006
).
15.
T.
Kamachi
,
N.
Kihara
,
Y.
Shiota
, and
K.
Yoshiazawa
,
Inorg. Chem.
44
,
4226
(
2005
).
16.
K.
Yoshizawa
,
N.
Kihara
,
T.
Kamachi
, and
Y.
Shiota
,
Inorg. Chem.
45
,
3034
(
2006
).
17.
P.
Chen
and
E. I.
Solomon
,
J. Am. Chem. Soc.
126
,
4991
(
2004
).
18.
J. P.
Evans
,
K.
Ahn
, and
J. P.
Klinman
,
J. Biol. Chem.
278
,
49691
(
2003
).
19.
D.
Maiti
,
D. H.
Lee
,
K.
Gaoutchenova
,
C.
Würtele
,
M. C.
Holthausen
,
A. A.
Narducci-Sarjeant
,
J.
Sundermeyer
,
S.
Schindler
, and
K. D.
Karlin
,
Angew. Chem. Int. Ed.
47
,
82
(
2008
).
20.
D.
Maiti
,
A. A.
Narducci-Sarjeant
, and
K. D.
Karlin
,
Inorg. Chem.
47
,
8736
(
2008
).
21.
M.
Reglier
,
E.
Amadei
,
R.
Tadayoni
, and
B.
Waegell
,
J. Chem. Soc., Chem. Commun.
447
(
1989
).
22.
S.
Hong
,
S. M.
Huber
,
L.
Gagliardi
,
C. J.
Cramer
, and
W. B.
Tolman
,
J. Am. Chem. Soc.
129
,
14190
(
2007
).
23.
S.
Itoh
,
H.
Nakao
,
L. M.
Berreau
,
T.
Kondo
,
M.
Komatsu
, and
S.
Fukuzumi
,
J. Am. Chem. Soc.
120
,
2890
(
1998
).
24.
N.
Kitajima
,
T.
Koda
,
Y.
Iwata
, and
Y.
Moro-Oka
,
J. Am. Chem. Soc.
112
,
8833
(
1990
).
25.
S. M.
Huber
,
M. Z.
Ertem
,
F.
Aquilante
,
L.
Gagliardi
,
W. B.
Tolman
, and
C. J.
Cramer
,
Chem. Eur. J.
15
,
4886
(
2009
).
26.
S. M.
Huber
,
A. R.M.
Shahi
,
F.
Aquilante
,
C. J.
Cramer
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
5
,
2967
(
2009
).
27.
K.
Yoshizawa
and
Y.
Shiota
,
J. Am. Chem. Soc.
128
,
9873
(
2006
).
28.
D.
Schröder
,
M. C.
Holthausen
, and
H.
Schwarz
,
J. Phys. Chem. B
108
,
14407
(
2004
).
29.
Y.
Gong
,
M.
Zhou
, and
L.
Andrews
,
Chem. Rev.
109
,
6765
(
2009
).
30.
D.
Schröder
and
H.
Schwarz
,
Angew. Chem. Int. Ed. Engl.
34
,
1973
(
1995
).
31.
D.
Schröder
,
H.
Schwarz
, and
S.
Shaik
,
Characterization, orbital description, and reactivity patterns of transition-metal oxo species in the gas phase
, in
Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations
, Structure and Bonding, Vol.
9
7 (
Springer
,
Berlin
,
2000
), pp.
91
123
32.
J. H.
Norman
,
H. G.
Staley
, and
W. E.
Bell
,
Adv. Chem. Ser.
72
,
101
(
1970
).
33.
D. L.
Hildenbrand
and
K. H.
Lau
,
J. Phys. Chem.
96
,
2325
(
1992
).
34.
E. R.
Fisher
,
J. L.
Elkind
,
D. E.
Clemmer
,
R.
Georgiadis
,
S. K.
Loh
,
N.
Aristov
,
L.
Sunderlin
, and
P. B.
Armentrout
,
J. Chem. Phys
93
,
2676
(
1990
).
35.
D. E.
Clemmer
,
N. F.
Dalleska
, and
P. B.
Armentrout
,
J. Chem. Phys.
95
,
7263
(
1991
).
36.
G. L.
Gutsev
,
L.
Andrews
, and
C. W.
Bauschlicher
,
Theor. Chem. Acc.
109
,
298
(
2003
).
37.
M. C.
Holthausen
, “Transition Metals,” in
The Encyclopedia of Mass Spectrometry
, edited by
P. B.
Armentrout
(
Elsevier
,
Amsterdam
,
2003
), Vol.
1
, Chap. II, pp.
77
89
38.
C. E.
Moore
,
Atomic Energy Levels, Circular 467
Vol. 2–3 (
National Bureau of Standards
,
Washington DC
,
1958
).
39.
J. E.
Sansonetti
and
W. C.
Martin
,
J. Phys. Chem. Ref. Data
34
,
1559
(
2005
).
40.
D.
Schröder
and
H.
Schwarz
, “
Intrinsic mechanisms of oxidation reactions as revealed by gas-phase experiments
,” in Organometallic Oxidation Catalysis (
Springer
,
Berlin
,
2007
), Vol. 22, Chap. I, pp.
1
15
41.
C. W.
Bauschlicher
,
S. R.
Langhoff
, and
H.
Partridge
,
Modern Electronic Structure Theory, Part II
, Advanced Series in Physical Chemistry, Vol. 2, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore,1995
)
42.
W.
Koch
and
M. C.
Holthausen
,
A Chemist's Guide to Density Functional Theory
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2001
), Chap. 9.3.
43.
C. W.
Bauschlicher
and
P.
Maitre
,
Theor. Chim. Acta
90
,
189
(
1995
).
44.
S.
Shaik
,
D.
Danovich
,
A.
Fiedler
,
D.
Schröder
, and
H.
Schwarz
,
Helv. Chim. Act.
78
,
1393
(
1995
).
45.
Y.
Nakao
,
K.
Hirao
, and
T.
Taketsugu
,
J. Chem. Phys.
114
,
7935
(
2001
).
46.
D.
Hippe
and
S. D.
Peyerimhoff
,
Mol. Phys.
76
,
293
(
1992
).
47.
M. M.
Kappes
and
R. H.
Staley
,
J. Phys. Chem.
85
,
942
(
1981
).
48.
M. T.
Rodgers
,
B.
Walker
, and
P. B.
Armentrout
,
Int. J. Mass Spectrom.
182/183
,
99
(
1999
).
49.
L. F. A.
Ferrao
,
O.
Roberto-Neto
, and
F. B. C.
Machado
,
Int. J. Quantum Chem.
108
,
2512
(
2008
).
50.
A.
Delabie
and
K.
Pierloot
,
J. Phys. Chem. A
106
,
5679
(
2002
).
51.
M.
Sodupe
,
V.
Branchadell
,
M.
Rosi
, and
C. W.
Bauschlicher
 Jr.
,
J. Phys. Chem. A
101
,
7854
(
1997
).
52.
A.
Daoudi
,
A. T.
Benjelloun
,
J. P.
Flament
, and
G.
Berthier
,
J. Mol. Spectrosc.
194
,
8
(
1999
).
53.
J. F.
Harrison
,
Chem. Rev.
100
,
679
(
2000
).
54.
Y.
Shiota
and
K.
Yoshizawa
,
J. Am. Chem. Soc.
122
,
12317
(
2000
).
55.
H.-J.
Werner
,
P. J.
Knowles
, MOLPRO, version 2009.1, a package of ab initio programs, with contributions from
R.
Lindh
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
A.
Mitrushenkov
,
G.
Rauhut
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
G.
Hetzer
,
T.
Hrenar
,
G.
Knizia
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
P.
Palmieri
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
U.
Schumann
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
A.
Wolf
, (
2009
), see http://www.molpro.net.
56.
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
,
CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package
, With contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
,
J.
Almlöf
and
P. R.
Taylor
, the integral packages, MOLECULE;
P. R.
Taylor
, PROPS;
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
, ABACUS;
A. V.
Mitin
and
C.
van Wüllen
, ECP routines. For the current version, see http://www.cfour.de.
57.
M.
Kállay
,
MRCC, a string-based quantum chemical program suite
, see http://www.mrcc.hu.
58.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
59.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
60.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
61.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
62.
K. A.
Peterson
and
C.
Puzzarini
,
Theor. Chem. Acc.
114
,
283
(
2005
).
63.
D.
Figgen
,
G.
Rauhut
,
M.
Dolg
, and
H.
Stoll
,
Chem. Phys.
311
,
227
(
2005
).
64.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
65.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
89
,
3401
(
1988
).
66.
G. E.
Scuseria
and
H. F.
Schaefer
 III
,
Chem. Phys. Lett.
152
,
382
(
1988
).
67.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
93
,
6104
(
1990
).
68.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kállay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
, and
J. F.
Stanton
,
J. Chem. Phys.
121
,
11599
(
2004
).
69.
Y. J.
Bomble
,
J.
Vázquez
,
M.
Kállay
,
C.
Michauk
,
P. G.
Szalay
,
A. G.
Császár
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
064108
(
2006
).
70.
M. E.
Harding
,
J.
Vázquez
,
B.
Ruscic
,
A. K.
Wilson
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
128
,
114111
(
2008
).
71.
K. A.
Peterson
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
72.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
73.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
74.
W.
Kutzelnigg
, in
Relativistic Electronic Structure Theory
, Vol.
11
,
Part I: Fundamentals
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
) Chap. XII, pp.
664
757
.
75.
B. H.
Botch
,
T. H.
Dunning
 Jr.
, and
J. F.
Harrison
,
J. Chem. Phys.
75
,
3466
(
1981
).
76.
M.
Merchán
,
R.
Pou-Amérigo
, and
B. O.
Roos
,
Chem. Phys. Lett.
252
,
405
(
1996
).
77.
K.
Andersson
and
B. O.
Roos
,
Chem. Phys. Lett.
191
,
507
(
1992
).
78.
J. W.
Moskowitz
,
K. E.
Schmidt
,
M. A.
Lee
, and
M. H.
Kalos
,
J. Chem. Phys.
77
,
349
(
1982
).
79.
P. J.
Reynolds
,
D. M.
Ceperley
,
B. J.
Alder
, and
W. A.
Lester
,
J. Chem. Phys.
77
,
5593
(
1982
).
80.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P.
López Ríos
,
J. Phys. Condens. Matter
22
,
023201
(
2010
).
81.
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
,
Phys. Rev. B
70
,
235119
(
2004
).
82.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
83.
A. J. H.
Wachters
,
J. Chem. Phys.
52
,
1033
(
1970
).
84.
P. J.
Hay
,
J. Chem. Phys.
66
,
4377
(
1977
).
85.
K.
Raghavachari
and
G. W.
Trucks
,
J. Chem. Phys.
91
,
1062
(
1989
).
86.
C. J.
Umrigar
,
K. G.
Wilson
, and
J. W.
Wilkins
,
Phys. Rev. Lett.
60
,
1719
(
1988
).
87.
P. R.C.
Kent
,
R. J.
Needs
, and
G.
Rajagopal
,
Phys. Rev. B
59
,
12344
(
1999
).
88.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
89.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
92.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
93.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
94.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
95.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
96.
B.
Miehlich
,
A.
Savin
,
H.
Stoll
, and
H.
Preuss
,
Chem. Phys. Lett.
157
,
200
(
1989
).
97.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
98.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
99.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
100.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Phys.
123
,
161103
(
2005
).
101.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
102.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al,
GAUSSIAN
03, Revision C.02,
Gaussian, Inc.
,
Pittsburgh, PA
,
2004
.
103.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al,
GAUSSIAN
09, Revision A.1,
Gaussian, Inc.
,
Pittsburgh, PA
,
2009
.
104.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
105.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
106.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
107.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
108.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley-VCH
,
Chichester, 2000
).
109.
F.
Jensen
,
Theor. Chem. Acc.
113
,
267
(
2005
).
110.
A.
Karton
and
J. M. L.
Martin
,
Theor. Chem. Acc.
115
,
330
(
2006
).
111.
A. J. C.
Varandas
,
J. Chem. Phys.
126
,
244105
(
2007
).
112.
G. A.
Petersson
,
D. K.
Malick
,
M. J.
Frisch
, and
M.
Braunstein
,
J. Chem. Phys.
123
,
074111
(
2005
).
113.
See supplementary material at http://dx.doi.org/10.1063/1.3537797 for potential energy curves and CI vector coefficients at the MR-ACPF/CASSCF levels of theory; counterpoise corrections of CCSD(T) binding energies; detailed data used for the CBS extrapolation of DFT results.
114.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
115.
A. K.
Timerghazin
,
G. H.
Peslherbe
, and
A. M.
English
,
Phys. Chem. Chem. Phys.
10
,
1532
(
2008
).
116.
T. G.
Williams
,
N. J.
DeYonker
, and
A. K.
Wilson
,
J. Chem. Phys.
128
,
044101
(
2008
).
117.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
118.
T. H.
Dunning
 Jr.
and
P. J.
Hay
,
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1976
), Vol.
3
, pp.
1
28
119.
V. A.
Rassolov
,
M. A.
Ratner
,
J. A.
Pople
,
P. C.
Redfern
, and
L. A.
Curtiss
,
J. Comput. Chem.
22
,
976
(
2001
).
120.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
121.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
122.
M.
Dolg
, Köln, personal communication (Nov.
2010
).
123.
M.
Heckert
,
M.
Kállay
,
D. P.
Tew
,
W.
Klopper
, and
J.
Gauss
,
J. Chem. Phys.
125
,
044108
(
2006
).
124.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
125.
J. P.
Daudey
,
P.
Claveriand
, and
J. P.
Malrieu
,
Int. J. Quantum Chem.
8
,
1
(
1974
).
126.
A.
Galano
and
J. R.
Alvarez-Idaboy
,
J. Comp. Chem.
27
,
1203
(
2006
).
127.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quant. Chem.
36
,
199
(
1989
).
128.
J. M.
Matxain
,
J. M.
Mercero
,
A.
Irigoras
, and
J. M.
Ugalde
,
Mol. Phys.
102
,
2635
(
2004
).
129.
L.
Wagner
and
L.
Mitas
,
Chem. Phys. Lett.
370
,
412
(
2003
).
130.
L. K.
Wagner
,
J. Phys. Condens. Matter
19
,
343201
(
2007
).
131.
A.
Bande
and
A.
Lüchow
,
Phys. Chem. Chem. Phys.
10
,
3371
(
2008
).
132.
M. B.C.
Filippi
and
M.
Dolg
,
J. Chem. Phys.
129
,
164115
(
2008
).
133.
C. W.
Bauschlicher
,
C. J.
Nelin
, and
P. S.
Bagus
,
J. Chem. Phys.
82
,
3265
(
1985
).
134.
M. C.
Holthausen
,
J. Comp. Chem.
26
,
1505
(
2005
).

Supplementary Material

You do not currently have access to this content.