We present nonequilibrium dissipative particle dynamics (DPD) simulations of cross-linked elastomers containing solid filler particles at 30% volume fraction. We study systematically the effect of the morphology (dispersed or aggregated particles) and of the effective particle–particle interactions. In addition, we have experimented by replacing the standard harmonic DPD bonds with other potential functions, conceived to deal with the finite extensibility of the polymer chains and the possibility of a slow equilibrium between strongly and weakly adsorbed chains at the rubber-filler interface. The simulation results shed some light on the basic mechanisms of rubber reinforcement, including the nonlinearity and history dependence commonly known as “Payne effect” and “Mullins effect.”

1.
E. P.
Giannelis
,
R.
Krishnamoorti
, and
E.
Manias
,
Adv. Polym. Sci.
138
,
107
(
1999
).
2.
A. C.
Balazs
,
T.
Emrick
, and
T. P.
Russell
,
Science
314
,
1107
(
2006
).
3.
R. A.
Vaia
and
J. F.
Maguire
,
Chem. Mater.
19
,
2736
(
2007
).
4.
J.
Jancar
,
J. F.
Douglas
,
F. W.
Starr
,
S. K.
Kumar
,
P.
Cassagnau
,
A. J.
Lesser
,
S. S.
Sternstein
, and
M. J.
Buehler
,
Polymer
51
,
3321
(
2010
).
5.
A.
Tuteja
,
M. E.
Mackay
,
S.
Narayanan
,
S.
Asokan
, and
M. S.
Wong
,
Nano Lett.
7
,
1276
(
2007
);
[PubMed]
A.
Tuteja
,
P. M.
Duxbury
, and
M. E.
Mackay
,
Macromolecules
40
,
9427
(
2007
).
6.
A. I.
Medalia
,
Rubber Chem. Technol.
51
,
437
(
1978
).
7.
Carbon Black, Science and Technology, 2nd ed., edited by
J. -B.
Donnet
,
R. C.
Bansal
, and
M.-J.
Wang
(
Marcel Dekker
,
New York
,
1993
).
8.
G.
Allegra
,
G.
Raos
, and
M.
Vacatello
,
Prog. Polym. Sci.
33
,
683
(
2008
).
9.
T. A.
Vilgis
,
G.
Heinrich
, and
M.
Klüppel
,
Reinforcement of Polymer Nanocomposites: Theory, Experiments and Applications
(
Cambridge University Press
,
Cambridge, England
,
2009
).
10.
B.
Erman
and
J. E.
Mark
,
Structure and Properties of Rubberlike Networks
(
Oxford University Press
,
New York
,
1997
).
11.
A.
Guth
,
J. Appl. Phys.
16
,
20
(
1945
).
12.
G.
Heinrich
and
M.
Klüppel
,
Adv. Polym. Sci.
160
,
1
(
2002
).
13.
G.
Raos
,
Macromol. Theory Simul.
12
,
17
(
2003
).
14.
T.A.
Vilgis
,
Polymer
46
,
4223
(
2005
).
15.
R. M.
Christensen
,
Mechanics of Composite Materials
(
Dover
,
New York
,
2005
).
16.
S.
Torquato
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
(
Springer-Verlag
,
New York
,
2002
).
17.
Q. H.
Zeng
,
A. B.
Yu
, and
C. Q.
Lu
,
Prog. Polym. Sci.
33
,
191
(
2008
).
18.
J.
Liu
,
L.
Zhang
,
D.
Cao
, and
W.
Wang
,
Phys. Chem. Chem. Phys.
11
,
11365
(
2009
).
19.
G.
Allegra
and
G.
Raos
,
J. Chem. Phys.
109
,
3285
(
1998
).
G.
Raos
and
G.
Allegra
,
J. Chem. Phys.
113
,
7554
(
2000
).
20.
G.
Raos
,
M.
Moreno
, and
S.
Elli
,
Macromolecules
39
,
6744
(
2006
).
21.
P. J.
Hoogerbrugge
and
J.M.V.A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
22.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
23.
R. D.
Groot
,
Lect. Notes Phys.
640
,
5
(
2004
).
24.
We use the term “bead” to refer any one of the coarse-grained atoms, belonging either to the polymer matrix or to the solid particles. The term “particle” is reserved for the latter, near-spherical solid aggregates of beads dispersed within the cross-linked network.
25.
M.
Kröger
,
Phys. Rep.
390
,
453
(
2004
).
26.
P. G.
Maier
and
D.
Göritz
,
Kautsch. Gummi Kunst.
49
,
18
(
1996
).
27.
S. S.
Sternstein
and
A.-J.
Zhu
,
Macromolecules
35
,
7262
(
2002
).
28.
J.
Berriot
,
H.
Montes
,
F.
Lequeux
,
D.
Long
, and
P.
Sotta
,
Macromolecules
35
,
9756
(
2002
);
H.
Montes
,
F.
Lequeux
, and
J.
Berriot
,
Macromolecules
36
,
8107
(
2003
);
H.
Montes
,
T.
Chaussée
,
A.
Papon
,
F.
Lequeux
, and
L.
Guy
,
Eur. Phys. J. E
31
,
263
(
2010
).
29.
Z.
Zhu
,
T.
Thompson
,
S.-Q.
Wang
,
E.D.
von Meerwall
, and
A.
Halasa
,
Macromolecules
38
,
8816
(
2005
).
30.
T.
Aoyagi
,
F.
Sawa
,
T.
Shoji
,
H.
Fukunaga
,
J.
Takimoto
, and
M.
Doi
,
Comput. Phys. Commun.
145
,
267
(
2002
).
31.
C.
Junghans
,
M.
Praprotnik
, and
K.
Kremer
,
Soft Matter
4
,
156
161
(
2008
).
32.
A. F.
Jakobsen
,
O. G.
Mouritsen
, and
G.
Besold
,
J. Chem. Phys.
122
,
204901
(
2005
);
[PubMed]
M. P.
Allen
,
J. Phys. Chem. B
110
,
3823
(
2006
).
[PubMed]
33.
K. P.
Travis
,
M.
Bankhead
,
K.
Good
, and
S. L.
Owens
,
J. Chem. Phys.
127
,
014109
(
2007
).
34.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
35.
G. T.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
, 2nd ed. (
ANU
,
Canberra
,
2007
).
36.
Equation (9) is in fact an approximate expression, which is valid for small deformations. See for example:
L.D.
Landau
and
E.M.
Lifshitz
,
Theory of Elasticity
, 2nd ed. (
Pergamon
,
Oxford
,
1970
).
37.
A. T.
Clark
,
M.
Lal
,
J. N.
Ruddock
, and
P. B.
Warren
,
Langmuir
16
,
6342
(
2002
).
38.
T.
Soddemann
,
B.
Dünweg
, and
K.
Kremer
,
Phys. Rev. E
68
,
046702
(
2003
).
39.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefmov
,
D. P.
Tieleman
, and
A. H.
de Vries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
40.
A. A.
Gusev
,
J. Mech. Phys. Solids
45
,
1449
(
1997
).
41.
S.
Westermann
,
M.
Kreitschmann
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
E.
Straube
,
B.
Farago
, and
G.
Goerick
,
Macromolecules
32
,
5793
(
1999
).
42.
A.
Botti
,
W.
Pyckhout-Hintzen
,
D.
Richter
,
V.
Urban
, and
E.
Straube
,
J. Chem. Phys.
124
,
174908
(
2006
).
43.
J. G.
Curro
and
J. E.
Mark
,
J. Chem. Phys.
80
,
4521
(
1984
).
44.
W. F.
Reichert
,
D.
Göritz
, and
E. J.
Duschl
,
Polymer
34
,
1216
(
1993
).
45.
Y.
Le Diagon
,
S.
Mallarino
, and
C.
Fretigny
,
Eur. Phys. J. E
22
,
77
(
2007
).
You do not currently have access to this content.