Orientational correlations in Langmuir monolayers of nematic and smectic-C liquid crystal (LC) phases are investigated by molecular dynamics simulation. In both phases, the orientational correlation functions decay algebraically yet with the different exponents of 1.9 and 0.2 for the nematic and the smectic-C monolayers, respectively. The power law decay, i.e., the absence of long-range orientational order, means the both monolayers should be the ideal 2D system with a continuous symmetry, whereas the large difference in the exponents of power law gives rise to the crucial difference in their optical properties; the nematic monolayer is optically isotropic while the smectic-C monolayer exhibits an anisotropy on the length scale of visible light. Since the exponent is inversely proportional to the molecular exchange energy, the averaged molecular interaction in the nematic monolayer should be an order of magnitude smaller than that in the smectic-C monolayer, which is ascribed to the low molecular density and the weak molecular dipole due to the water molecule. The relation between the molecular interaction and the orientational correlation calculated for the 2D LC system offers much information not only about the 2D LCs but also on the bulk system.

1.
S. A.
DiBenedetto
,
A.
Facchetti
,
M. A.
Ratner
, and
T. J.
Marks
,
Adv. Mater.
21
,
1407
(
2009
).
2.
Q.
Cao
and
J. A.
Rogers
,
Adv. Mater.
21
,
29
(
2009
).
3.
R.
Ramesh
and
N. A.
Spaldin
,
Nature Mater.
6
,
21
(
2007
).
4.
H. J.
Freund
and
G.
Pacchioni
,
Chem. Soc. Rev.
37
,
2224
(
2008
).
5.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jaing
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
6.
M. I.
Katsnelson
,
Mater. Today
10
,
20
(
2007
).
7.
J. C.
Meyer
,
A. K.
Geim
,
M. I.
Katsnelson
,
K. S.
Novoselov
,
T. J.
Booth
, and
S.
Roth
,
Nature (London)
446
,
60
(
2007
).
8.
T.
Ando
,
A. B.
Fowler
, and
F.
Stern
,
Rev. Mod. Phys.
54
,
437
(
1982
).
9.
S. R.
Forrest
,
Chem. Rev.
97
,
1793
(
1997
).
10.
M.
Szekeres
,
O.
Kamalin
,
R. A.
Schoonheydt
,
K.
Wostyn
,
K.
Clays
,
A.
Persoons
, and
I.
Dekany
,
J. Mater. Chem.
12
,
3268
(
2002
).
11.
X.
Qian
and
W.
Hubner
,
Phys. Rev. B
60
,
16192
(
1999
).
12.
C.
Li
and
A. J.
Freeman
,
Phys. Rev. B
43
,
780
(
1991
).
13.
K. J.
Strandburg
,
Rev. Mod. Phys.
60
,
161
(
1988
).
14.
B. I.
Halperin
and
D. R.
Nelson
,
Phys. Rev. Lett.
41
,
121
(
1978
).
15.
H. D.
Sikes
and
D. K.
Schwartz
,
Science
278
,
1604
(
1997
).
16.
J. M.
Kosterlitz
and
D. J.
Thouless
,
J. Phys. C: Solid State Phys.
6
,
1181
(
1973
).
17.
N. D.
Mermin
and
H.
Wagner
,
Phys. Rev. Lett.
17
,
1133
(
1966
).
18.
C.
Klingshirn
,
Chem. Phys. Chem.
8
,
782
(
2007
).
19.
C. W.
Nan
,
M. I.
Bichurin
,
S.
Dong
, and
D.
Viehland
,
J. Appl. Phys.
103
,
031101
(
2008
).
20.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
, 2nd ed. (
Clarendon
,
Oxford
,
1993
).
21.
P. G
de Gennes
,
Symp. Faraday Soc.
5
,
16
(
1971
).
22.
Y.
Tabe
,
I.
Nishiyama
,
M.
Yoneya
,
K. M.
Aoki
, and
H.
Yokoyama
, in
Proceedings of the 2001 Japan Liquid Crystal Conference
, 25–27 September 2001 (
Japanese Liquid Crystal Society
,
Saitama
,
2001
), p.
183
.
23.
J. P.
Straley
,
Phys. Rev. A
4
,
675
(
1971
).
24.
J. Y.
Denham
,
G. R.
Luckhurst
,
C.
Zannoni
, and
J. W.
Lewis
,
Mol. Cryst. Liq. Cryst.
60
,
185
(
1980
).
25.
C.
Chiccoli
,
P.
Pasini
, and
C.
Zannoni
,
Physica A
148
,
298
(
1988
).
26.
D.
Frenkel
and
R.
Eppenga
,
Phys. Rev. A
31
,
1776
(
1985
).
27.
Y.
Tabe
,
T.
Yamamoto
,
I.
Nishiyama
,
K. M.
Aoki
,
M.
Yoneya
, and
H.
Yokoyama
,
J. Phys. Chem. B
106
,
12089
(
2002
).
28.
G.
Watanabe
and
Y.
Tabe
,
J. Phys. Soc. Jpn.
76
,
0946021
(
2007
).
29.
J. J. P.
Stewart
, MOPAC 2002 Manual, Fujitsu Ltd. (
2004
).
30.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
 III
,
J. Phys. Chem.
94
,
8897
(
1990
).
31.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
6638
(
1984
).
32.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
110
,
1657
(
1988
).
33.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
34.
M. J.
Cook
and
M. R.
Wilson
,
Mol. Cryst. Liq. Cryst.
357
,
149
(
2001
).
35.
D. L.
Cheung
,
S. J.
Clark
, and
M. R.
Wilson
,
Phys. Rev. E.
65
,
051709
(
2002
).
36.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford Science Publications
,
Oxford
,
1987
), Chap. 3
37.
S.
Hess
, in
Advances in the Computer Simulations of Liquid Crystals
, edited by
P.
Pasini
and
C.
Zannoni
(
Kluwer Academic
,
Dorderecht
,
2000
).
38.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic
,
New York
,
2002
).
39.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
40.
R.
Peters
and
K.
Beck
,
Proc. Natl. Acad. Sci. U.S.A
80
,
7183
(
1983
).
41.
M. B.
Forstner
,
J.
Kas
, and
D.
Martin
,
Langmuir
17
,
567
(
2001
).
42.
S.
Karaborni
,
Langmuir
9
,
1334
(
1993
).
43.
D.
Frenkel
, in
Phase Transitions in Liquid Crystals
, edited by
S.
Martellucci
and
A. N.
Chester
(
Plenum
,
New York
,
1992
).
44.
C.
Rosenblatt
,
R.
Pindak
, and
N. A.
Clark
,
Phys. Rev. Lett.
42
,
1220
(
1979
).
45.
S. B.
Dierker
and
R.
Pindak
,
Phys. Rev. Lett.
59
,
1002
(
1987
).
46.
Y.
Galerne
,
I.
Poinsot
, and
D.
Schaegis
,
Appl. Phys. Lett.
71
,
222
(
1997
).
47.
C. V.
Brown
,
P. E.
Dunn
, and
J. C.
Jones
,
Eur. J. Appl. Math.
8
,
281
(
1997
).
You do not currently have access to this content.